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A B S T R A C T   

Natural images comprise contours and boundaries defined by 1st-order luminance-modulated (LM) cues that are 
readily encoded by V1 neurons, and 2nd-order contrast-modulated (CM) cues that carry local, but not over-the- 
space, luminance changes. The neurophysiological foundations for CM processing remain unsolved. Here we 
used two-photon calcium imaging to demonstrate that V1 superficial-layer neurons respond to both LM and CM 
gratings in awake, fixating, macaques, with overall LM responses stronger than CM responses. Furthermore, 
adaptation experiments revealed that LM responses were similarly suppressed by LM and CM adaptation, with 
moderately larger effects by iso-orientation adaptation than by orthogonal adaptation, suggesting that LM and 
CM orientation responses likely share a strong orientation-non-selective subcortical origin. In contrast, CM re
sponses were substantially more suppressed by iso-orientation than by orthogonal LM and CM adaptation, likely 
suggesting stronger orientation-specific intracortical influences for CM responses than for LM responses, besides 
shared orientation-non-selective subcortical influences. These results thus may indicate a subcortical-to-V1 filter- 
rectify-filter mechanism for CM processing: Local luminance changes in CM stimuli are initially encoded by 
orientation-non-selective subcortical neurons, and the outputs are half-wave rectified, and then summed by V1 
neurons to signal CM orientation, which may be further substantially refined by intracortical influences.   

1. Introduction 

Contours and boundaries in natural images can be defined by 1st- 
order statistics, such as luminance, as well as by 2nd-order statistics, 
such as contrast. First-order luminance-modulated (LM) bars, edges, and 
gratings are readily processed by orientation-selective V1 neurons that 
are typically modeled as linear spatial filters (Hubel and Wiesel, 1959, 
1962; Carandini et al., 1999). However, second-order con
trast-modulated (CM) bars, edges, and gratings contain only local 
luminance changes, but no luminance changes over the space (See 
Fig. 2A for examples of LM and CM gratings). To explain CM stimulus 
processing, filter-rectify-filter (FRF) models (Fechner, 1860; Bergen and 
Adelson, 1988; Bergen and Landy, 1991; Graham and Sutter, 1998; 
Landy and Oruc, 2002) propose that linear filters first respond to local 

luminance changes (black and white dots in the CM grating of Fig. 2A), 
then their responses are nonlinearly rectified and summed by a larger 
second-stage linear filter. During nonlinear rectification, responses to 
dots at one polarity (e.g., black) are either nullified through half-wave 
rectification, or become equivalent to responses to dots at the other 
polarity (e.g., white) through full-wave rectification. The outputs are 
responses to dots at one single polarity (e.g., white), which are then 
summed by a second-stage filter. 

The neuronal mechanisms underlying CM responses are not well 
understood. Single-unit recording studies revealed more A18/V2 neu
rons than A17/V1 neurons in cats and monkeys that respond to CM 
stimuli (Zhou and Baker, 1994; El-Shamayleh and Movshon, 2011; G. Li 
et al., 2014). In addition, there are reports that A17/V1 neurons may 
signal CM orientation through surround suppression when the inhibition 
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zones are elongated and orthogonal to a neuron’s preferred orientation 
(H. Tanaka and Ohzawa, 2009; Hallum and Movshon, 2014), which 
would require sufficient aspect ratios of the orthogonal inhibition zones. 
In addition, Y cells in cat LGN can show cortical-cell-like CM responses 
at very high spatial frequencies (SFs) beyond neurons’ first-order SF 
passbands as a result of response nonlinearity (Demb et al., 2001; 
Rosenberg et al., 2010), and Y-cell like neurons in cat A18 may receive 
direct inputs from LGN Y cells and respond to CM gratings (Gharat and 
Baker, 2017). This nonlinearity, however, cannot account for CM re
sponses within the neurons’ first-order SF passbands (El-Shamayleh and 
Movshon, 2011). 

In this study, we used two-photon calcium imaging to compare the 
responses of macaque V1 neurons to LM and CM gratings. Two-photon 
imaging allows simultaneous recording of a large number of neurons, 
which would provide more comprehensive and less biased estimates of 
V1 neuronal responses to LM and CM stimuli, as well as respective 
orientation and SF tuning properties. Moreover, we used orientation 
adaptation to examine whether and how much LM and CM processing 
shares common mechanisms, and whether CM orientation processing, 
like LM orientation processing (Hubel and Wiesel, 1962; Tanaka, 1985; 
Reid and Alonso, 1995; Ferster et al., 1996), might receive subcortical 
contributions. 

2. Materials and methods 

2.1. Monkey preparation 

Monkey preparations were identical to those reported in a previous 
study (Guan et al., 2021; Ju et al., 2021). Six rhesus monkeys (Macaca 
mulatta) aged 5–8 years were each prepared with two sequential sur
geries under general anesthesia and strictly sterile condition. In the first 
surgery, a 20-mm diameter craniotomy was performed on the skull over 

V1. The dura was opened and multiple tracks of 100–150 nL AAV1. 
hSynap.GCaMP5G.WPRE.SV40 (AV-1-PV2478, titer 
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inch Sony G520 CRT monitor (refresh rate = 80 Hz, resolution = 1280 
pixel × 960 pixel, pixel size = 0.31 mm × 0.31 mm). Because of the 
space limit, the viewing distance varied depending on the stimulus 
spatial frequency (LM gratings: 30 cm at 0.25, 0.5, and 1 cpd, 60 cm at 
2cpd, and 120 cm at 4 and 8 cpd; CM gratings: 30 cm at 0.25, 0.5, and 1 
cpd, 60 cm at 2 and 4 cpd, and 120 cm at 8 cpd), except for Monkey F 

whose viewing distances were 45 cm at 0.25, 0.5, and 1 cpd and 180 cm 
at 2, 4, and 8 cpd (see Fig. 6). For Monkey C, visual stimuli were 
generated by Psychotoolbox 3 (Pelli and Zhang, 1991) and presented on 
a 27-inch Acer XB271HU LCD monitor (refresh rate = 80 Hz native, 
resolution = 2560 pixel × 1440 pixel native, pixel size =

0.23 mm × 0.23 mm). The viewing distance was 50 cm for lower 

Fig. 2. Stimuli and comparisons of neuronal responses to LM and CM gratings. A. LM (top) and CM (bottom) gratings used in the experiments. The LM grating was a 
Gabor (a Gaussian-windowed sinusoidal grating). The CM grating was the same Gabor multiplied by binary noise. B. Responses of example neurons to LM and CM 
gratings at various orientations. The orientation tuning functions were fitted with a Gaussian function. Error bars indicate ± 1 SEM. C. Scatterplots of maximal CM vs. 
LM responses of neurons. Results at two recording depths of the same FOV in Monkeys A and B were pooled. Each dot represents one neuron’s maximal CM and LM 
responses. The horizontal and vertical dashed lines indicate medians. See Fig. S1A for similar results when all orientation neurons before Gaussian fitting are 
considered. D. Distributions of CM-LM response indices (CLIs). A neuron would prefer a LM grating more if CLI < 0. The vertical lines indicate medians. M: Median. 
See Fig. S1B for similar results when all orientation neurons before Gaussian fitting are considered. Note: The LM data of current Monkeys A and B were from the 
same data sets of Monkeys C and D in two earlier papers (Guan et al., 2021; Ju et al., 2021), and were reanalyzed in this study for comparisons with CM data collected 
during the same period. 
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frequencies (0.25–2 cpd) and 100 cm for higher frequencies (4 & 8 cpd). 
For both monitors, the screen luminance was linearized by an 8-bit 
look-up table, and the mean luminance was ~47 cd/m2. 

A drifting square-wave grating (SF = 4 cpd, contrast = full, speed = 3 
cycles/s, starting phase = 0◦, and size = 0.4◦ in diameter) was first used 
to determine the location, eccentricity (typically 2–5◦) and size (typi
cally 0.8 – 1◦
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stimulus with this trial. For a small portion of neurons (e.g., ~3% in 
Monkeys A and B when responding to LM Gabors) showing direction 
selectivity as their responses to two opposite directions differed signif
icantly (p < 0.05, Friedman test), the 6 trials at the preferred direction 
was considered for calculations of ΔFn/F0 as the cell’s responses to a 
particular stimulus. F0 was still averaged over 12 trials at two opposite 
directions. 

Several steps were then taken to decide whether a neuron was tuned 
to orientation and/or spatial frequency of LM or CM stimuli. First, the 
orientation, SF, and size (σ) producing the maximal response among all 
LM or CM conditions were selected. Then responses to other 11 orien
tations were decided at the selected SF, and 5 SFs were decided at the 
selected orientation, all at the same selected size. Second, to select 
orientation and/or SF tuned neurons, a non-parametric Friedman test 
was performed to test whether a neuron’s responses at 12 orientations or 
6 SFs were significantly different from each other. To reduce Type-I 
errors, the significance level was set at α = 0.01. Third, for those 
showing significant orientation difference, the trial-based orientation 
responses of each neuron were fitted with a Gaussian model: 

R(θ



Progress in Neurobiology 217 (2022) 102315

6

Fig. 3. Orientation tuning of V1 neurons to LM and CM gratings. A. Percentage distributions of LMORI_only, CMORI_only, and LMORI+CMORI neurons on the basis of 
Gaussian fitting in four monkeys. B. Examples of functional maps of LM orientation tuning by LMORI_only and LMORI+CMORI neurons (upper panels), and CM 
orientation tuning by CMORI_only and LMORI+CMORI neurons (lower panels). C. Frequency distributions of preferred LM and CM orientations by LMORI+CMORI 
neurons. D. Frequency distributions of neurons against the difference of preferred LM and CM orientations by LMORI+CMORI neurons. The dashed lines are simulated 
baselines indicating null distributions of differences in randomly paired LM and CM orientation preferences across neurons. E. The LM vs. CM orientation tuning 
bandwidths (half height at half width) of each LMORI+CMORI neuron. Arrows indicate medians. Note: Summary statistics of neurons’ SF tuning with LM and CM 
stimuli are presented in Figs. S2B & S2C. 
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monkey in Fig. 3C. The orientation bias shown in each FOV was 
consistent with our previous report that the orientation distributions (of 
LM neurons) vary substantially within and among individual FOVs, 
which are minimized when data from multiple FOVs are pooled (Ju 
et al., 2021). The corresponding frequency distributions of orientation 
preference differences were plotted in Fig. 3D. Neurons in Monkeys A 
(FOV 1) and D tended to have mostly unrelated LM and CM orientation 
preferences, which were not significantly different from random 
(p = 0.60 and 0.13, respectively, permutation test) (Fig. 3D). In 
contrast, those in Monkeys A (FOV 2), B, and C more likely preferred 
similar LM and CM orientations (higher frequencies at small tuning 
differences) rather than random (all p < 0.001, permutation test) 
(Fig. 3D). The large variations thus appeared to be contingent on specific 
FOVs, but not monkeys. However, the median LM and CM orientation 
bandwidths (half width at half height) were similar, differing by less 
than 4◦ in all animals, although the variations among neurons were 
quite large (Fig. 3E). The LM and CM orientation bandwidths also 
differed by less than 4◦ when all LM (LMORI_only and LMORI+CMORI) and 
all CM (CMORI_only and LMORI+CMORI) neurons in Fig. 3A were consid
ered (Fig. S2A). 

3.2. Orientation adaptation effects 

Next, we ran an orientation adaptation experiment on Monkeys C, D, 
and E to explore the possible neural mechanisms of CM processing and 
the relationship between neuronal LM and CM responses in V1. Two 
conjectures were made. First, if V1fi‭ㄱ⸳㠸ㄠⴱ〮㔸㐳‵㠴㌠ㄠⴲ⸵㠲‭㄰⸵㠴㌠吰〰܀
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elements was fixed at 1 × 1 pixel. For SFs at 0.25, 0.5, and 1 cpd, the 
viewing distance was set at 0.45 m, so that each individual pixel was 
2.36 arcmin in size, equal to a maximal and still visible SF of 12.7 cpd 
(the actual SFs in local areas could be lower when more than one pixel of 
the same polarity was connected). However, for SFs at 2, 4, and 8 cpd, 
the viewing distance was quadrupled to 1.80 m, so that each individual 
pixel size was 0.59 arcmin , equivalent to a maximal SF of up to 50.8 cpd, 
which was below the parafoveal spatial resolution limit and thus 
invisible. What is left with these higher-SF stimuli would be potential 
low-contrast luminance cues. Therefore, recorded responses at these 
SFs, if present, would reflect remaining display luminance nonlinearity. 

The SF tuning functions of 3 example LMORI+CMORI neurons and the 
average population responses of LMORI+CMORI neurons (Fig. 6A) sug
gested that these neurons responded strongly to LM gratings at 2 and 4 
cpd, with preferred SFs around 1–2 cpd. However, they barely respon
ded to CM gratings at 2–8 cpd, even if 2 cpd was near their mean 
preferred SFs with LM stimuli. As a result, these neurons preferred ma[⠀ᨀȀഀ฀ᨀЮ㜸ㄲ㄀ܩ崠告਱‰⁔䨊ㄠ〠〠ㄠ㈶⸹㠷㈠〠呭਱㌀ᨱ 
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Fig. 5. The effects of adaptation on V1 responses to CM gratings. A. Another illustration of an adaptation stimulus sequence AATn1AATn2AATn3AATn4. A was a LM 
(shown in the sequence) or CM adaptor at one of six orientations. Tn1-n4 were the LM and CM gratings whose orientations were either the same as, or orthogonal to, 
the adaptor orientation, and were presented in a random order. B. The orientation tuning function of four example neurons with CM gratings and the responses at the 
peak orientation after adaptation to four types of adaptors. C. Scatterplots of individual neurons’ CM responses at the peak orientation before and after adaptation to 
4 types of adaptors. The dashed lines indicate median responses. Left panels: Results with LM adaptors. Right panels: Results with CM adaptors. D. The adaptation 
effect indices for CM responses with 4 types of adaptors. Similar results were obtained when AEI data with CMORI_only neurons and LMORI+CMORI neurons were 
analyzed separately (Fig. S3B). Error bars show 25 and 75 percentiles. 
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intra-cortical mechanisms, as well as feedback mechanisms from 
downstream visual areas. 

The CM stimuli we use are binary noise multiplied by a Gabor 
function (Fig. 2A), similar to those in several psychophysical and brain 
imaging studies (Nishida et al., 1997; Larsson et al., 2006; Ashida et al., 
2007; An et al., 2014). They are different from contrast envelopes 
commonly used in neuronal recording studies, which are made by 
multiplication of a low-SF grating (as the envelope) and a high-SF 
grating (as the carrier) of different orientations (Zhou and Baker, 
1994; El-Shamayleh and Movshon, 2011; G. Li et al., 2014; Gharat and 
Baker, 2017). One concern with contrast envelope stimuli is that two 
overlapping gratings at different orientations are expected to elicit 
cross-orientation suppression, which occurs even when the gratings 
differ greatly in spatial frequency (Morrone et al., 1982; Bonds, 1989; 
DeAngelis et al., 1992). Such suppression might be to some degree 
responsible for the weak V1 evidence for contrast envelope processing in 
single-unit studies (Zhou and Baker, 1994; El-Shamayleh and Movshon, 
2011). As our recent two-photon imaging evidence suggests, some V1 
neurons actually prefer plaid stimuli (formed by two intersecting grat
ings) to Gabor gratings (Guan et al., 2020). However, these plaid neu
rons are likely excluded during initial receptive field mapping in 
single-unit recording studies because plaid neurons tend not to 
respond much to gratings. One missing link is whether V2 or A18, where 
more CM neurons have been discovered with contrast envelope stimuli 
(Zhou and Baker, 1994; El-Shamayleh and Movshon, 2011; G. Li et al., 
2014), contain substantially more plaid neurons. 

Finally, our adaptation evidence, which suggests more upstream FRF 
processing from subcortical to V1 (see earlier discussion), is different 
from psychophysical (Nishida et al., 1997) and fMRI adaptation results 
(Nishida et al., 1997; Larsson et al., 2006; Ashida et al., 2007) that show 
little cross adaptation effects between LM and CM stimuli. Assuming 
these early studies had not been affected by the small number of par
ticipants (e.g., total N = 14 in three cited fMRI studies), the results are at 
odds with the FRF models in general by suggesting independent LM and 
CM processing. Some fMRI evidence indicates that CM processing 
involved higher brain areas such as V3, V4, and MT+ (Larsson et al., 
2006; Ashida et al., 2007). It is possible that psychophysical and fMRI 

adaptation results are also affected by later and more cognitive stages of 
CM processing. For example, high brain areas may process LM and CM 
stimuli independently on the basis of their appearance differences. 
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