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A B S T R A C T   

To efficiently process complex visual scenes, the visual system often summarizes statistical information across 
individual items and represents them as an ensemble. However, due to the lack of techniques to disentangle the 
representation of the ensemble from that of the individual items constituting the ensemble, whether there exists a 
specialized neural mechanism for ensemble processing and how ensemble perception is computed in the brain 
remain unknown. To address these issues, we used a frequency-tagging EEG approach to track brain responses to 
periodically updated ensemble sizes. Neural responses tracking the ensemble size were detected in parieto- 
occipital electrodes, revealing a global and specialized neural mechanism of ensemble size perception. We 
then used the temporal response function to isolate neural responses to the individual sizes and their interactions. 
Notably, while the individual sizes and their local and global interactions were encoded in the EEG signals, only 
the global interaction contributed directly to the ensemble size perception. Finally, distributed attention to the 
global stimulus pattern enhanced the neural signature of the ensemble size, mainly by modulating the neural 
representation of the global interaction between all individual sizes. These findings advocate a specialized, global 
neural mechanism of ensemble size perception and suggest that global interaction between individual items 
contributes to ensemble perception.   

1. Introduction 

The visual system has limited processing capacity (Luck and Vogel, 
1997; Palmer et al., 2011). One strategy to overcome the capacity lim-
itation and optimize information processing is to summarize the com-
plex and redundant information into ensemble coding (Alvarez, 2011; 
Parkes et al., 2001; Whitney and Yamanashi Leib, 2018). Our visual 
system is remarkably accurate in estimating ensemble properties (e.g., 
mean, variance) in multiple dimensions, including low-level visual 
features such as size (Ariely, 2001; Chong and Treisman, 2003) and 
orientation (Parkes et al., 2001), and high-level visual characteristics 
such as emotion, gender (Haberman and Whitney, 2007), face identities 
(Neumann et al., 2013), and biological motion (Sweeny et al., 2013). 

However, because individual items constitute the ensemble, it is difficult 
for traditional neuroimaging methods to dissociate the neural process of 
ensemble perception from that of individual item perception. As a result, 
although ensemble perception has been studied extensively at the 
behavioral level over the past two decades, how it is implemented in the 
brain remains controversial. 

Two hypotheses have been proposed to explain how ensemble 
perception is achieved in the brain. The subsampling hypothesis (Myc-
zek and Simons, 2008; Simons and Myczek, 2008; Solomon et al., 2011) 
proposes that ensemble perception does not recruit a global mechanism; 
instead, it can be achieved by sampling and summarizing a subset of 
items. Specifically, a small subset of items are randomly sampled by 
attention, and their properties are averaged to generate a mean 
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perception. Consequently, not all items in the stimulus set are processed 
in ensemble perception. The summary-statistic representation hypoth-
esis (Ariely, 2001, 2008; Chong et al., 2008; Chong and Treisman, 
2005a, 2005b), on the other hand, suggests a specialized global mech-
anism that computes summary-statistic representations over all dis-
played items. According to this hypothesis, the ensemble property of a 
stimulus set is processed in parallel with its individual items. All items 
are processed in the ensemble perception (Iakovlev and Utochkin, 
2021), although their weights may vary 
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approach to extract EEG responses specific to certain sensory stimulus 
inputs from the overall EEG recordings (Ding and Simon, 2012; Lalor 
et al., 2006). Here, to explore the neural representations and contribu-
tions of individual sizes and their interactions, we defined three com-
ponents: individual sizes, their local interactions, and their global 
interaction. Operationally, the local interactions were defined as the 
products of two neighboring individual sizes and the global interaction 
between all individuals was defined as the product over eight individual 
sizes (Kim et al., 2015; Werner and Noppeney, 2010). If the individual 
items interact with each other in the brain, the local and/or global 
interaction components should be represented in the brain and 
contribute to the ensemble perception. 

Previous studies have demonstrated that ensemble representation is 
enhanced when attention is distributed over the global pattern as 
opposed to when attention is focused on a single item (Baek and Chong, 
2020a; Chong and Treisman, 2005b; de Fockert and Marchant, 2008). It 
is unclear which components, individuals or their local or global in-
teractions, are modulated by attentional distribution. Modulating the 
attentional distribution provides a chance to explore which components 
are critical to ensemble perception. Therefore, Experiment 2 further 
investigated modulation of spatial attention distribution on ensemble 
perception. Taken together, the present study aims to address a series of 
questions regarding the neural mechanism of ensemble perception, 
including (1) the neural signature of ensemble size perception, (2) 
whether the individual sizes and their local and global interactions are 
represented in the brain and contribute to ensemble size perception, and 
(3) whether the representations of individual sizes and their interactions 
are modulated by attentional distribution. 

2. Materials and methods 

2.1. Participants 

A total of 45 human volunteers (23 female, age range: 18–24 years) 
participated in this study. Experiment 1 (n = 23) and Experiment 2 (n =
22) were performed at Peking University and Hangzhou Normal Uni-
versity, respectively. Our sample sizes were comparable to those in 
recent studies using similar TRF methods (Broderick et al., 2019; Jia 
et al., 2017; O’Sullivan et al., 2019), which were typically from 16 to 20. 
We decided to recruit 23 and 22 participants for the two experiments 
because our data analysis would estimate 17 independent neural re-
sponses (see below) from the overall EEG signals. All participants were 
right-handed, reported normal or corrected-to-normal vision, and had 
no known neurological or visual disorders. They gave written, informed 
consent in accordance with the procedures and protocols approved by 
the Human Subject Review Committee of Peking University or Hang-
zhou Normal University. 

2.2. Experiment 1 

Apparatus. We used MATLAB (version 9.5, The MathWorks) and 
Psychotoolbox-3 extensions (Brainard, 1997; Pelli, 1997) to generate 
and display visual stimuli and record behavioral responses. The visual 
stimuli were presented on a Display++ LCD monitor (Cambridge 
Research Systems) with a 1920 × 1080 spatial resolution and a 120 Hz 
refresh rate. Electroencephalography (EEG) recording was carried out in 
a dark room shielded from sound and electromagnetic signals. The 
participants were comfortably seated at 57 cm from the screen with their 
heads stabilized on a chin rest. 

Stimuli. An array of circles were presented against a gray back-
ground (luminance: 54 cd/m2) at eight fixed locations (Fig. 1a). The 
eccentricity of the center of each circle was 9◦ and the distance between 
adjacent circle centers was 6.9◦. As depicted in Fig. 1, the edge of each 
circle consisted of an outer black line (luminance: 0.41 cd/m2) and an 
inner white line (luminance: 107.49 cd/m2), so that the mean luminance 
of each circle was equal to the background luminance. 

A 6-s stimulus sequence consisted of 144 circle arrays, which were 
presented successively. Each circle array was presented for 41.7 ms (5 
frame), so the sequence was updated at 24 Hz. The circle sizes in each 
array were determined independently using the following procedure 
(Fig. 1b). First, the radius of each of the eight circles was drawn from a 
uniform distribution between 0.5◦ and 1◦. At the 3rd update of every 3 
updates, the mean radius of the eight circles was set to 0.9◦, so that the 
mean size changed periodically at 8 Hz (i.e., base frequency; Fig. 1b). In 
an oddball-present sequence, at the last update of every 24 updates, the 
mean radius of the eight circles was set to a larger size of 1.2◦ or 1.4◦, so 
that the oddball array appeared periodically at 1 Hz. Second, to enlarge 
the size differences among the circles in each array, n⠀ሀ᰷ㄮ㌰㠸⁔洊嬨odȹ㔳㔠呭ਜ਼⠀Ḟ㔵㈮㘲㐷⁔洠〠ㄠⴲㄮ㜱㘳ㄮ;〰、⸵㌶㐠ⴲ⸶㈴㜠呭ਜ਼㔹〰〰Ѐࠩ崠告ㄠ〠〠ㄠ㐰⸹㤲㤠㠱⸴㔲㔠呭ਜ਼⠀̀ऀ᐀〃⸀ࠩ崠告‰‰‱‱㜮㠷㔳‸〮ㄳ㘵⁔洊嬨weR㐀̀ࠩ崠告‰‰‱†呌ਯ䘰‱⁔昊ㄠ〠〠ㄠ〠〠㜸⸸㈷㜠呭ਜ਼⠀ऀഀጀ܀B〡s ⥝⁔䨊‰‰‱‴〮㔸㜵‷㠮㠲㜷⁔洊嬨dr:『ㄱ℀̀ࠩ崠告ਊㄠ〠〠ㄠ㐳⸶㠱㜠㜸⸸㈷㜠呭ਜ਼⠀ᜀఀⴰ〰㨩s ⥝⁔䨊ਰఀഀ܀〰ਰ〃 ⥝⁔䨊‰‰‱‱㔮〸㘹‷㜮㔱ㄸ⁔洊嬨unifog㈱℀̀ࠩ崠告ਊ‰‰‱‱㠮㤲㠠㜷⸵ㄱ㠠呭ਜ਼⠀ᔀऀ̀ఀऀሀऀ␡s ⥝⁔䨊
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0.47 s at a random time between 1 and 6 s after trial onset. The par-
ticipants were asked to detect whether the circles were of the same size 
(the attend-to-ensemble condition), the changes in luminance of the 
fixation (the attend-to-fixation condition), and changes in contrast of the 
left circle (the attend-to-item condition) in three blocks respectively, by 
pressing a key. In each trial, a 6-s stimulus sequence was presented, and 
participants were instructed to maintain fixation on a small point at the 
center of the display. There was a 1–1.5s interval between trials. The 
order of the 3 blocks was counterbalanced across participants. At the 
beginning of each block, the participants completed 5 trials to get 
familiar with the task. It took about 15 min to complete the whole 
experiment. 

2.4. EEG data acquisition and processing 

EEG signals were recorded continuously at 1000 Hz using two 
BrainAmp amplifiers and a 64-channel EasyCap (BrainProducts). FCz 
electrode was used as reference and electrode impedances were main-
tained below 5 kΩ during data acquisition. Horizontal and vertical 
electrooculograms were recorded by two additional electrodes around 
the subjects’ eyes. EEG signals were preprocessed using the FieldTrip 
toolbox (Oostenveld et al., 2011). They were re-referenced to the 
average value of all channels except two electrooculograms and were 
offline band-pass filtered between 0.1 and 40 Hz using a Butterworth IIR 
filter with the order of 2. The signals were then downsampled to the 
same frequency as the screen refresh rate (i.e., 120 Hz in Experiment 1 
and 85 Hz in Experiment 2) for temporal response function (TRF) esti-
mation (Lalor et al., 2006). Independent component analysis was per-
formed to remove eye-movement and artifact components, and the 
remaining components were back-projected onto the EEG electrode 
space. 6-s EEG epochs during stimulus sequence presentation were 
segmented for each trial and used for further analyses. 

2.5. SSVEP analysis 

Evoked activities were computed by averaging EEG epochs for each 
condition and each participant. FFT was applied to the evoked activities 
after applying a Hanning taper to calculate the power spectrum for each 
channel with a frequency resolution (the size of the frequency bins) of 
0.167 Hz. A baseline-correction procedure was used to extract SSVEP 
responses from baseline noise across the frequency spectrum (Meigen 
and Bach, 2000). Specifically, the difference between the power in the 
bin of interest and the mean power in the six surrounding bins was 
computed. In Experiment 2, only the trials without any manipulation 
were included in the analysis to exclude the influence of target detection 
on SSVEP. 

2.6. Predicting EEG responses using individual circle sizes and their 
interactions as predictors 

We used a forward TRF approach to predict EEG responses using 
individual circle sizes and their interactions as predictors. TRF describes 
the brain’s linear transformation of the stimulus input, S(t), to the neural 
response output, R(t), as R(t) = TRF * S(t), where * denotes the 
convolution operator (Jia et al., 2017, 2019; Lalor et al., 2006). TRF was 
defined as a 1 s length neural response to each unit change in a predictor 
and was computed by a regularized linear regression between the pre-
dictor value and EEG amplitude. A parameter λ was used to control 
overfitting in the ridge regression. 

In this study, we used eight circle sizes (I1-8, they are I1, I2, I3, I4, I5, I6, 
I7, I8), eight local interactions (L1-8, they are I1 × I2, I2 × I3, I3 × I4, I4 × I5, 
I5 × I6, I6 × I7, I7 × I8, I8 × I1) and a global interaction (G, that is I1 × I2 ×

I3 × I4 × I5 × I6 × I7 × I8) to predict EEG responses (Best and Wolf, 2015; 
Smith and Kutas, 2015; Werner and Noppeney, 2010): 

EEG=

(
∑8

i=1
TRFIi  *  Ii

)

+

(
∑8

i=1
TRFLi * Li

)

+ TRFG*G  

where Ii and TRFIi are the size of the i-th circle and the corresponding 
TRF, Li and TRFLi are the i-th local interaction and the corresponding 
TRF, and G and TRFG are the global interaction and the corresponding 
TRF. The individual size predictors represented the information of the 
eight circles, the local-interaction predictors represented the informa-
tion of interactions between two neighboring individuals, and the 
global-interaction predictor represented the information of the highest- 
order interaction over all circles (Smith and Kutas, 2015; Werner and 
Noppeney, 2010). 

The TRF-based EEG prediction was performed using the multivariate 
temporal response function (mTRF) toolbox (Michael J. Crosse et al., 
2016). The λ values in all models were set to 1 for all subjects in our 
experiments. Each predictor was converted to z score before model 
fitting to reduce structural multicollinearity (Frost, 2019). 

We quantified how well the individual circle sizes and their local and 
global interactions were encoded in the EEG signals using a leave-one- 
trial-out cross-validation procedure. TRFs were trained on N-1 trials 
and convolved with the predictors of the left-out trial to predict the 
channel-specific EEG signals (Broderick et al., 2019; Ding and Simon, 
2012). The squared Pearson correlation coefficient (Michael J. Crosse 
et al., 2016; Frost, 2019) between the predicted and the recorded EEG 
signals were used to quantify the predicted accuracy (i.e., predicted R2). 
The advantage of using predicted accuracy for model evaluation is that it 
is sensitive to model overfitting. Because it is impossible to predict 
random noise, the predicted accuracy must drop for an overfit model 
that adds random noise to the model as predictors (Michael J. Crosse 
et al., 2016; Frost, 2019). If the individual circle sizes and their in-
teractions were encoded in the EEG signals, the predicted accuracy 
should increase after adding these predictors to the TRF model. We 
defined a full model using the individual circle sizes, local interactions, 
and global interaction as the predictors of the TRF model to predict the 
EEG signals (the ILG model) (see above). We then defined three reduced 
models that used the individual circle sizes and the local interactions 
(the IL model), the individual circle sizes and the global interaction (the 
IG model), or the local interactions and the global interaction (the LG 
model) as the predictors to predict the EEG signals, respectively. The 
encoding of 
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2 included three attention conditions: attend-to-ensemble, attend--
to-fixation, and attend-to-item. 

The response accuracies were 0.78 ± 0.04, 0.84 ± 0.01, and 0.76 ±
0.03 for the attend-to-ensemble, attend-to-fixation, and attend-to-item 
conditions, respectively. There was no significant difference across the 
three conditions (F(2,42) = 2.19, p = 0.12, partial η2 = 0.10). 

Replicating the findings in Experiment 1, the largest SSVEP power 
was observed also at the POz electrode (Fig. 4) and significant SSVEPs at 
the base frequency were found in all the three conditions (attend-to- 
ensemble: W = 252, p < 0.001, rrb = 0.99; attend-to-fixation: W = 253, p 
< 0.001, rrb = 1.00; attend-to-item: W = 250, p < 0.001, rrb = 0.98). 

More importantly, the SSVEP power was significantly greater in the 
attend-to-ensemble condition than in the attend-to-fixation (W = 210, p 
= 0.016, rrb = 0.66) and attend-to-item (W = 213, p = 0.011, rrb = 0.68) 
conditions. No significant difference was found between the attend-to- 
fixation and the attend-to-item conditions (W = 170, p = 0.498, rrb =

0.34). These results are consistent with the attentional effect on 
ensemble perception at the behavioral level (Baek and Chong, 2020a; 
Chong and Treisman, 2005b; de Fockert and Marchant, 2008) and 
demonstrate that distributed attention over the global pattern enhances 
the specialized brain response to the ensemble size. 

3.4. Attentional effects on the contributions of individual circle sizes, local 
interactions, and global interaction to the ensemble size perception 

The manipulation of attention also allowed to examine how atten-
tional distribution over the circle array affects the neural representations 
of the individual circle sizes, the local interactions, and the global 
interaction, as well as their contributions to the SSVEP. As in Experiment 
1, we calculated the predicted accuracy differences between the full 
model and the three reduced models. The same five electrodes as in 
Experiment 1 were selected for statistical analyses. We found that the 
neural representation of the individual sizes was significant in all three 
attention conditions (Fig. 5a, all ps < 0.001), with no cross-condition 
differences (all ps > 0.05). Similarly, the neural representation of the 
local interactions was significant in all three conditions (Fig. 5b, all ps <
0.01), with no cross-condition differences (all ps > 0.05). However, the 
neural representation of the global interaction exhibited a different 
pattern (Fig. 5c). While the neural representation of the global interac-
tion was significantly above zero in the attend-to-ensemble condition 
(W = 253.00, p < 0.001, rrb = 1.00), it was not different from zero in the 
attend-to-fixation condition (W = 89.00, p = 0.704, rrb = − 0.30) and 
even significantly below zero in the attend-to-item condition (W =
18.00, p < 0.001, rrb = − 0.86). Importantly, the neural representation of 
the global interaction in the attend-to-ensemble condition was signifi-
cantly greater than those in the attend-to-fixation (W = 239.00, p <
0.001, rrb = 0.90) and the attend-to-item (W = 252.00, p < 0.001, rrb =

0.99) conditions, and there was no significant difference between the 
attend-to-fixation and the attend-to-item conditions (W = 179.00, p =

Fig. 3. Neural representation of the individual circle 
sizes, the local interactions, and the global interaction 
and their contributions to the SSVEP to the ensemble 
size. a. Topographies of predicted accuracy differ-
ences between the full and the three reduced models 
for quantifying the neural representation of the three 
predictors. Five electrodes with the best representa-
tion performance for each predictor, marked with 
asterisk, were selected for statistical analyses. b. 
Predicted accuracy differences between the full and 
the three reduced models, which were ascribed to the 
three predictors. c. Contributions of the three pre-
dictors to the SSVEP power. ***p < 0.001, *p < 0.05.   

Fig. 4. Attentional effect on the SSVEP to the ensemble size. a. Topographies of 
the SSVEP power in the three attention conditions. b. SSVEP power at POz in 
the three attention conditions. ***p < 0.001, *p < 0.05. 

J. Jia et al.                                                                                                                                                                                                                                       
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0.275, rrb = 0.42). These results demonstrated that the neural repre-
sentations of the individual circle sizes and the local interactions were 
not modulated by the attentional distribution. In contrast, the neural 
representation of the global interaction could be enhanced by distrib-
uted attention on the global pattern. 

Next, we directly examined how the contributions of the neural 
representation of the individual circle sizes, the local interactions, and 
the global interaction to the ensemble size perception were modulated 
by attention. We compared the SSVEP power of the predicted EEG signal 
in the full model with those in the three reduced models. As shown in 
Fig. 6, the neural representation of the individual sizes and the local 
interactions did not contribute significantly to the SSVEP power in all 
three attention conditions (all ps > 0.05). In contrast, the neural rep-
resentation of the global interaction contributed significantly to the 
SSVEP power in the attend-to-ensemble (W = 235.00, p < 0.001, rrb =

0.86) and attend-to-fixation conditions (W = 211.00, p = 0.014, rrb =

0.67), but not in the attend-to-item condition (W = 117.00, p = 1, rrb =

− 0.08). The contribution of the global interaction was significantly 

greater in the attend-to-ensemble condition than in the attend-to-item 
condition (W = 204.00, p = 0.031, rrb = 0.61), demonstrating that 
attention to the ensemble enhanced the contribution of the global 
interaction to the ensemble size perception. 

4. Discussion 

We used a frequency-tagging technique, steady-state visual evoked 
potential (SSVEP), in combination with the temporal response function 
(TRF) technique, to study the neural signature and computational 
principle of ensemble size representation. Our findings provided evi-
dence for a global mechanism of ensemble perception. Specifically, first, 
SSVEP showed clear electrophysiological responses that were synchro-
nized with the frequency of the mean size changes, revealing that the 
human brain has a specialized neural response to ensemble size 
perception; second, using the TRF approach to predict EEG responses to 
individual sizes and their local and global interactions, we identified 
that the global interaction of all items in the display was encoded in EEG 
signals and contributed directly and significantly to ensemble size 
perception; finally, we identified, for the first time, that the attentional 
enhancement effects on ensemble perception were accompanied with an 
increased contribution only from the global interaction component, 
suggesting that the attentional enhancement on ensemble size percep-
tion derives from the effect of attention on the global interaction pro-
cessing. Together, our findings support a specialized and global neural 
mechanism for ensemble size perception and suggest that the global 
interaction over all individuals contributes to ensemble size perception. 

The existence of a specialized and global neural mechanism for 
ensemble perception is much debated. The subsampling hypothesis ar-
gues that ensemble size can be accurately estimated by randomly sam-
pling and linearly averaging a few items strategically (Myczek and 
Simons, 2008; Solomon et al., 2011). However, this would not predict 
the EEG signals synchronized with the base frequency, which results 
from the variation of the mean size rather than combinations of a subset 
of individual items. Furthermore, the subsampling hypothesis could not 
explain the global interaction result, i.e., the interaction of all items 
contributed to 
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linearization (e.g., simple averaging) could not generate efficient 
ensemble perception. Recent studies have demonstrated that the con-
tributions of individuals are weighted in their mean (Choi and Chong, 
2020) and variance (Jeong and Chong, 2021) computations for 
ensemble perception. Thus, these models and ours commonly suggest 
that ensemble perception is not achieved by simple averaging. However, 
because the present study did not manipulate the weights of individual 
circles and our TRF method could not compute the weights of individual 
circles in single trials, the current results could not examine the 
contribution of weighted averaging in ensemble perception. The global 
interaction component does not exclude the effect of weighted aver-
aging either. 

Intuitively, the ensemble size can be computed in a hierarchically 
connected, feedforward neural network. In this framework, low-level 
processing (i.e., the processing of individuals) determines high-level 
processing (i.e., the processing of the ensemble), and the representa-
tions of individual sizes are independent of each other. However, this 
pure feedforward framework does not explain the present results that 
the contribution of the representations of individuals to the ensemble 
size perception is not significant. It does not accommodate previous 
findings that the representations of individuals were degraded in 
ensemble perception (Allik et al., 2013, 2014; Ariely, 2001), either. The 
present results advocate recurrent computations (Edelman and Gally, 
2013; Jastrzębowska et al., 2021; Lamme and Roelfsema, 2000; Singer, 
2021) in ensemble size perceptionfi㔲‰⁔搊⠎s ⥔樊㌮㈹㌴‰excurrent 
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Hock, H.S., Schöner, G., 2016. Nonlinear dynamics in the perceptual grouping of 
connected surfaces. Vis. Res. 126, 80–96. https://doi.org/10.1016/j. 
visres.2015.06.006. 

Iakovlev, A.U., Utochkin, I.S., 2021. Roles of saliency and set size in ensemble averaging. 
Atten. Percept. Psychophys. 83, 1251–1262. https://doi.org/10.3758/s13414-020- 
02089-w. 

Im, H.Y., Albohn, D.N., Steiner, T.G., Cushing, C.A., Adams, R.B., Kveraga, K., 2017. 
Differential hemispheric and visual stream contributions to ensemble coding of 
crowd emotion. Nat. Human Behav. 1, 828–842. https://doi.org/10.1038/s41562- 
017-0225-z. 

Jastrzębowska, M.A., Chicherov, V., Draganski, B., Herzog, M.H., 2021. Unraveling brain 
interactions in vision: the example of crowding. Neuroimage 240, 118390. https:// 
doi.org/10.1016/j.neuroimage.2021.118390. 

Jeong, J., Chong, S.C., 2021. Perceived variability reflects the reliability of individual 
items. Vis. Res. 183, 91–105. https://doi.org/10.1016/j.visres.2021.02.008. 

Jia, J., Fang, F., Luo, H., 2019. Selective spatial attention involves two alpha-band 
components associated with distinct spatiotemporal and functional characteristics. 
Neuroimage 199, 228–236. https://doi.org/10.1016/j.neuroimage.2019.05.079. 

Jia, J., Liu, L., Fang, F., Luo, H., 2017. Sequential sampling of visual objects during 
sustained attention. PLoS Biol. 15, e2001903 https://doi.org/10.1371/journal. 
pbio.2001903. 

Kim, S.S., Gomez-Ramirez, M., Thakur, P.H., Hsiao, S.S., 2015. Multimodal interactions 
between proprioceptive and cutaneous signals in primary somatosensory cortex. 
Neuron 86, 555–566. https://doi.org/10.1016/j.neuron.2015.03.020. 

Lalor, E.C., Pearlmutter, B.A., Reilly, R.B., McDarby, G., Foxe, J.J., 2006. The VESPA: a 
method for the rapid estimation of a visual evoked potential. Neuroimage 32, 
1549–1561. https://doi.org/10.1016/j.neuroimage.2006.05.054. 

Lamme, V.A.F., Roelfsema, P.R., 2000. The distinct modes of vision offered by 
feedforward and recurrent processing. Trends Neurosci. 23, 571–579. https://doi. 
org/10.1016/S0166-2236(00)01657-X. 

Leib, A.Y., Kosovicheva, A., Whitney, D., 2016. Fast ensemble representations for 
abstract visual impressions. Nat. Commun. 7, 13186 https://doi.org/10.1038/ 
ncomms13186. 

Luck, S.J., Vogel, E.K., 1997. The capacity of visual working memory for features and 
conjunctions. Nature 390, 279–281. 

Meigen, T., Bach, M., 2000. On the statistical significance of electrophysiological steady- 
state responses. Doc. Ophthalmol. 98, 207–232. 

Myczek, K., Simons, D.J., 2008. Better than average: alternatives to statistical summary 
representations for rapid judgments of average size. Percept. Psychophys. 70, 
772–788. https://doi.org/10.3758/PP.70.5.772. 

Neumann, M.F., Schweinberger, S.R., Burton, A.M., 2013. Viewers extract mean and 
individual identity from sets of famous faces. Cognition 128, 56–63. https://doi.org/ 
10.1016/j.cognition.2013.03.006. 

Norcia, A.M., Appelbaum, L.G., Ales, J.M., Cottereau, B.R., Rossion, B., 2015. The steady- 
state visual evoked potential in vision research: a review. J. Vis. 15, 4. https://doi. 
org/10.1167/15.6.4. 

Oh, B.-I., Kim, Y.-J., Kang, M.-S., 2019. Ensemble representations A㤰々em;〰ऀ〸㈳㌀ࠀ

distincH㌳㌀ࠀ

visua�㌮࠰workin䀰ጠ〮࠰me�〉onԹ⸷㘰㌠〮࠰Na�〹㌰㈀࠰

Commu�゚ 　

https://doi.org/10.103fi.䨊〠〰Ƞⴳ⸷㔲㈠㐹㠹⁔ㄷn䄠ⴳ⸷㔲㈠㨵㈲‴㤸㤠吀㬀㸀㌀㬀㔳⸰㌲Zਰ‰　

.r㔀

https://doi.org/10.1152/jn.00297.2011
https://doi.org/10.1152/jn.00297.2011
https://doi.org/10.3389/fnint.2013.00063
https://doi.org/10.1162/jocn_a_01704
https://doi.org/10.1162/jocn_a_01704
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref26
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref26
https://doi.org/10.1016/j.neuroimage.2019.06.008
https://doi.org/10.1016/j.cub.2007.06.039
https://doi.org/10.1016/j.cub.2007.06.039
https://doi.org/10.1016/j.visres.2015.06.006
https://doi.org/10.1016/j.visres.2015.06.006
https://doi.org/10.3758/s13414-020-02089-w
https://doi.org/10.3758/s13414-020-02089-w
https://doi.org/10.1038/s41562-017-0225-z
https://doi.org/10.1038/s41562-017-0225-z
https://doi.org/10.1016/j.neuroimage.2021.118390
https://doi.org/10.1016/j.neuroimage.2021.118390
https://doi.org/10.1016/j.visres.2021.02.008
https://doi.org/10.1016/j.neuroimage.2019.05.079
https://doi.org/10.1371/journal.pbio.2001903
https://doi.org/10.1371/journal.pbio.2001903
https://doi.org/10.1016/j.neuron.2015.03.020
https://doi.org/10.1016/j.neuroimage.2006.05.054
https://doi.org/10.1016/S0166-2236(00)01657-X
https://doi.org/10.1016/S0166-2236(00)01657-X
https://doi.org/10.1038/ncomms13186
https://doi.org/10.1038/ncomms13186
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref40
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref40
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref41
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref41
https://doi.org/10.3758/PP.70.5.772
https://doi.org/10.1016/j.cognition.2013.03.006
https://doi.org/10.1016/j.cognition.2013.03.006
https://doi.org/10.1167/15.6.4
https://doi.org/10.1167/15.6.4
https://doi.org/10.1038/s41467-019-13592-6
https://doi.org/10.1038/s41467-019-13592-6
https://doi.org/10.1155/2011/156869
https://doi.org/10.1111/ejn.14425
https://doi.org/10.3758/s13414-011-0199-2
https://doi.org/10.1038/89532
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref50
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref50
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref51
http://refhub.elsevier.com/S0028-3932(22)00149-X/sref51
https://doi.org/10.3758/s13414-021-02269-2
https://doi.org/10.3758/s13414-021-02269-2
https://doi.org/10.3758/PP.70.7.1335
https://doi.org/10.3758/PP.70.7.1335
https://doi.org/10.1073/pnas.2101043118
https://doi.org/10.1111/psyp.12320
https://doi.org/10.1167/11.12.13
https://doi.org/10.1037/xge0000667
https://doi.org/10.1037/xge0000667
https://doi.org/10.1037/a0028712
https://doi.org/10.1016/j.neuroimage.2021.118680
https://doi.org/10.1037/a0029333
https://doi.org/10.1037/a0029333
https://doi.org/10.1093/cercor/bhp248
https://doi.org/10.1146/annurev-psych-010416-044232
https://doi.org/10.1016/j.neuron.2011.05.035

	Ensemble size perception: Its neural signature and the role of global interaction over individual items
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Experiment 1
	2.3 Experiment 2
	2.4 EEG data acquisition and processing
	2.5 SSVEP analysis
	2.6 Predicting EEG responses using individual circle sizes and their interactions as predictors
	2.7 Statistical tests

	3 Results
	3.1 SSVEP to the ensemble size
	3.2 Contributions of individual circle sizes, local interactions, and global interaction to the ensemble size representation
	3.3 Attentional effect on the SSVEP to the ensemble size
	3.4 Attentional effects on the contributions of individual circle sizes, local interactions, and global interaction to the  ...

	4 Discussion
	Author contributions
	Declaration of competing interest
	Acknowledgments
	References


