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Abstract: Previous intermodulation (IM) studies have employed two (or more) temporal modulations
of a stimulus, with different local elements of the stimulus being modulated by different frequencies.
Brain activities of IM obtained mainly from electroencephalograms (EEG) have been analyzed in the
frequency domain. As a powerful tool, IM, which can provide a direct and objective physiological
measure of neural interaction, has emerged as a promising method to decipher neural interactions in
visual perception, and reveal the underlying different perceptual processing levels. In this review,
we summarize the recent applications of IM in visual perception, detail the protocols and types of
IM, and extend its utility and potential applications to the multisensory domain. We propose that
using IM could prevail in partially revealing the potential hierarchical processing of multisensory
information and contribute to a deeper understanding of the underlying brain dynamics.

Keywords: frequency-tagging; intermodulation components (IMs); computational model; neural
interactions; MVPA; neural network; electroencephalogram (EEG); multisensory

1. Introduction

At every moment, the human brain receives a deluge of information from the world;
the source/content of the information may not only be unisensory—visual image, auditory
clicks, tactile taps and so on, but also a combination of various inputs from multiple
senses. The human sensory system is so powerful that it not only flexibly responds and
processes information unimodally or crossmodally, but also integrates local information
(such as ingredient properties of an object—colors, temporal frequencies and so on) into
a coherent and complete whole. The cognitive processing of the latter has been termed
‘object perception’. Therefore, within ‘object perception’, two processes are on-going
potentially: the multisensory perception of an object and the perceptual organization of
local information into a global one. For the latter, take the example of the visual (unisensory)
system, in which human perception of a figure made of straight lines mobilizes cascades of
selective perceptual organizations as well as hierarchical structures of representations [1].
Among the representations, some subsets of a figure will be encoded as integral, structure
units of that figure while others will not. The presumed, low-level structural units have
been organized to form a holistic perception of the figure of interest.

To better understand the cognitive processing in the above object perception, whether
integrating parts into a whole or from unisensory to multisensory perception, we need
to further understand the core of the problem: how does the brain dynamically integrate
the scattered, local features (representations) into a coherent perceptual object (holistic
representation)?
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With the rapid development of noninvasive brain technology in the past half-century,
our knowledge of unisensory and multisensory perceptual integration has also rapidly
advanced. Among various emerging technologies, functional magnetic resonance imaging
(fFMRI) technology, which captures blood oxygenation level (BOLD)-dependent changes
in the human brain, has been a promising tool to address a large domain of neuroscience
for human cognition. Most object perception studies with fMRI as the main approach can
answer well the following two questions: (1) what are the brain areas that subserve a given
typical perceptual integration—this is from the perspective of structural and functional
origins for perception; and (2) to explain how perceptual integration has been realized with
the functional connectivity among those brain areas identified. However, even with the
results answering these two main types of questions, it is still far from clear to probe the
exact neural mechanism for unisensory and multisensory processing. Typically, the BOLD
signal from fMRI is sluggish to delineate the temporal dynamics of perceptual processing
and fails to capture the instant changes in (micro) states of brain function. Moreover, fMRI
methods cannot comprehensively reveal the time and frequency-related information that is
associated with specific “units” that contribute to the ultimate object perception.

Compared with fMRI, electroencephalogram (EEG) methods prevail due to their
high temporal resolutions. However, with traditional EEG approaches, for a multisensory
integration exploration, it is difficult to tease apart the contributions from unisensory inputs
or the genuine integration of multiple senses. Likewise, it is not sufficient to reveal how
the local, elementary components and their interactions lead to the perception of a Gestalt
object. To name a typical study, Delis et al. [2] used EEG and an active sensing paradigm
in which participants were actively perceiving to distinguish two texture stimuli using
either visual (V) or tactile (H) information or two sensory cues (VH) to reveal that the
multisensory integration of visual and tactile motor information occurs in the contralateral
somatosensory and motor areas. They found that the integration of visual information and
tactile information could enhance the accuracy of perceptual decision-making more than
unisensory information alone. This study to a certain extent answers the neural mechanism
of multisensory integration for perceptual decision-making. However, the readers are not
informed how the activated cortices are corresponding to a single sensory input (V or H)
or a combination of inputs (V and H) with differential contributions of each sense, but the
downside is that we cannot be sure whether/how multisensory integration is occurring in
the corresponding brain regions.

Therefore, in both unisensory and multisensory domains, we urgently need to find
direct neural markers that can accurately lock and quantify the featured “units” for sensory
processing and characterize the integration of the local information into a whole, holistic
percept, or integration of the multiple senses into a coherent multisensory representa-
tion. This attempt is typically worthwhile when the local information (“units”) could be
identified as brain oscillations with characteristic frequency modulations.

In this review, we mainly introduce the intermodulation components (IMs) obtained
from steady-state evoked potentials (SSEP) based on frequency-tagging methodologies, in
which frequency acts as a feature of stimulus. In previous studies on IMs, researchers have
usually designed several stimulus materials that change simultaneously and periodically
over time for unisensory information (such as the brightness of stimuli varying sinusoidally
in vision research). As observers process this information, their neural oscillations coincide
with the input stimuli in terms of the physically eliciting frequencies (cycles), a phenomenon
known as “neural entrainment”. Neural entrainment can remain unchanged during in-
formation processing, resulting in homeostatic neural responses. Frequency-tagging of
neural signals, with frequency as a feature of stimulus in the time domain, could contain
power peaks at specific frequencies in the frequency domain. Notably, these frequency
peaks generated from external stimuli should be distinguished from the spontaneously
generated frequency bands in our brains.

IMs have been frequently used in vision research over the past few decades. The
design of experimental materials is the key point of this type of research. Often, the
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icantly when the timing was aligned. Temporal coherence enhanced the processing of
multisensory inputs during sensory-specific phases of cortical processing, presumably by
inducing synchronous dynamic binding of activity and/or improved dynamic engagement.
Porcu et al. [6] manipulated the cues in the experiment (visual cues or tactile cues) and
then asked participants to receive 7.5 Hz visual stimuli and 20 Hz tactile stimuli. The
results of the study found significant differences in the second-order IM (see Section 2.3)
intermodulation responses generated by cues from the two senses. This result suggests
differences in the neural integration of tactile and visual information.

In this review, we summarize the recent literature that applied IMs to EEG data to
study multisensory perception, detail the principles, the order, and computation modeling
of IM, and extend its application in the multisensory domain to better understand the
hierarchical perception processing of multisensory information, as well as to reveal the
underlying brain dynamics.

2. Definitions of IMs
2.1. Time and Frequency Domains

Compared with other organisms, humans have highly developed nervous systems and
neuron networks, allowing advanced perceptual and cognitive functions. The EEG method
can capture the timing signals of the tiny neuronal firings associated with specific cognitive
functions. The firings as time series signals may contain various information components
and rhythmic information. Therefore, how to separate these rhythmic components is crucial
to our understanding of the external environment. The Fourier transform can convert the
temporal signal into frequency domain signals to help us separate and identify different
information components.

Fourier transform can convert the temporal signal into the frequency domain signal to
help us separate different information components. Fourier transform considers that any
periodic signal function can be represented by a linear superposition of a set of sine and
cosine signals (see Equation (1)).

¥
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The above mathematical approach bridges the time domain (wave amplitude varies
with time) and the frequency domain (amplitude varies with frequency). Three frequency
components, fundamental frequency (e.g., f1, f2), harmonics (e.g., 2  f1), and IMs (e.g.,
fl + f2, which can be represented asm fl +n  f2), can be obtained by a frequency
domain analysis of time series EEG signals.

Among all Fourier transform algorithms, the fast Fourier transform (FFT) algorithm
is one of the most used and is highly efficient. According to the Nyquist theorem, the
highest frequency after Fourier transform is half of the sampling frequency in the time
domain. Therefore, the experimenter needs to take this into account when collecting EEG
signals. In addition, prolonged stimulus presentation can improve frequency resolution
(see Equation (2)).
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After Fourier transform, Equation (2) r represents the difference between the frequen-
cies of two adjacent data points, Py, represents the highest frequency and Ny, represents the
number of data points. According to the Nyquist theorem, it can be obtained that
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Figure 3. Simple example of IMs. (a) The three signals varying over time within 5 s. The signals y;
and y; are sinusoidal signals with Gaussian random perturbations. The frequencies of y; and y, are
4 Hz and 6 Hz, respectively, and the signal yj is the linear superposition of y; and y,. (b) Amplitude
of signal y3 in the frequency domain, which represents the amplitude of each spectral component.
The term “fundamental” frequencies denote the frequencies of the input signals (4 Hz and 6 Hz here),
and the term IM denotes any sum of the nonzero integer-multiples of the fundamental frequencies
(ie.m fl+n f2,suchas4+6=10Hzand6 4=2Hz).

2.3. The Order of IMs and Its Role in Cognition

The order of IMs represents the sum of the absolute values of the coefficients (such as
f1 + f2 is the second-order IM and 2 f1 + f2 is the third-order IM) in the intermodulation
components. For example, in Figure 3, the components at 2 Hz and 10 Hz represent the
second-order intermodulation. In task-free vision experiments, the second-order intermod-
ulation response tends to be stronger [11].

For example, Cai et al. [12] used the IM-based steady-state visual-evoked potential
(SSVEP) technique to study the integration of Chinese characters. In the experiment, partic-
ipants needed to look at the real characters or fake characters with symmetrical structures
flashing on the computer screen. These characters were divided into two independent
parts and flashes at different frequencies (6 Hz and 7.2 Hz, see Figure 4). There were
no additional tasks for the participants. The results showed significant second-order IM
(6 + 7.2 = 13.2 Hz) in both the real characters condition and the fake characters condition.
In addition, compared with the fake characters condition, the real characters condition can
strengthen the second-order IM (6 + 7.2 = 13.2 Hz) more, with higher peak power than fake
characters.

Figure 4. Stimuli. (a) The real (upper row) and pseudo (lower row) Chinese characters used in the
experiment. (b) During the experiment, each side of the character was on—off flickering at 6 Hz or
7.2 Hz (balanced across trials).

Second-order IMs are considered low-order neural interactions [12]. As this experi-
ment showed, second-order IMs may represent low-level bottom-up cognitive processing,
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in which participants passively perceived the flickering free from any expectations or

focused attention.
In recent years, studies have found that higher-order IMs may represent neural interac-

tions of higher-order (top-down) cognitive functions (e.g., learning, expectation, attention).
Vergeer et al. [11
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Table 1. Different mathematical formulae and their spectra.

Basis of Neural

Function Description . Output-IMs Comment
Processing
A single input signal is Neurons transmit Fundamental L|_near processing of
2Y1 rocessed linearl signals linearl frequenc signal cannot yield
P y 9 y y harmonics and IMs
Nonlinear half Neuron firing rate is Fundamental frequency ~ Nonlinear processing
Rec(y1) rectification of a selectively inhibited and 2nd

single signal

to0

of a single signal

order harmonics yields harmonics

Rec(y1) + Rec(y2)

Two signals are first
half rectified and
then added

Nonlinear processing
of multiple
parallel signals

Nonlinear processing
of multiple signals
without interaction

terms cannot yield IMs

Fundamental frequency
and 2nd
order harmonics

Rec(y1) Rec(yz)

Two signals are first
half rectified and
then multiplied

Nonlinear Sequence
Processing of Multiple
Serial Signals

Fundamental
frequency, 2nd order
harmonics, 2nd order
IM and 3rd order IM

Nonlinear processing
of multiple signals with
interaction terms
yields IMs

HSa(y1)

Nonlinear half
squaring of a
single signal

Neuron firing rate is
selectively inhibited
to0

Fundamental
frequency

HSa(y1) + HSq(y2)

Two signals processed

to half squaring
nonlinearity and
then added

Nonlinear processing
of multiple
parallel signals

Fundamental frequency
and 2nd
order harmonics

Two signals processed

to half squaring

Nonlinear Sequence

Fundamental

. - frequency, 2nd order
HSa(y)  HSa(y2) nonlinearity Procgsesrlir;?soif r'\litljsltlple harmonics and 2nd
and multiplied 9 order IM
Fundamental
Sq(yy) Nonlinear square wave Output of frequency, 3rd order
1

of a single signal

ONZ/OFF neurons

harmonics and 5th
order harmonics

Sa(y1) + Sa(yz)

Two signals processed
to squaring wave and
then added

Nonlinear processing
of multiple
parallel signals

Fundamental
frequency, 3rd order
harmonics and 5th
order harmonics

Sa(y1)  Sa(yz)

Two signals processed
to squaring wave and
then multiplied

Nonlinear Sequence
Processing of Multiple
Serial Signals

The interaction of
square wave signals
can generate many IMs

All IMs (low-order and
high-order IM)

eY1tVa/ @¥1tyz2 4 1

Sum of the two signals
as the input of
logistic function

Sum of multiple
neuron signals as input
for logical selection

Fundamental frequency
and 3rd order IM

e¥r Y2/ @Y1 Y2 4+ 1

Difference of the two
signals as the input of
logistic function

Difference of neuron
signals as input for
logical selection

Fundamental frequency
and 3rd order IM

Considering that there are many kinds of nonlinear processing functions, we only
consider the Rec function and the Sqg function for the sake of simplicity (in fact, the neu-
ral interaction may involve more than these two types of functions). First, we use the

full model,

y=vyity2+tvn
+ Rec(yy)

Rec(y2) + Rec(y:
+ Sq(y1) + Sa(y2) + Sa(y1)

y2 + Rec(y1) + Rec(yz)
y2), 5)
Sa(y2)
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to perform simulations and generate many simulated EEG signal data. We then fitted the
simulated data to the full model (Equation (5)); and generated a second batch of simulated
neural data. Correlation analysis was performed on the first set of simulated data and the
second set of simulated data. In addition, we need to design multiple reasonable alternative
models to verify that our full model is the optimal model (see Table 2).

AMAWWAWWAAMAMAAAN,

A A o ok Mt
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Figure 5. Examples of different nonlinear processing functions in the time domain and frequency
domain. (a) Waveforms in the time domain (0 to 5 s). y; and y, are sinusoidal inputs at 4 Hz and
6 Hz, respectively. See text for definitions of Rec, HSq and Sq. (b) Spectra of each waveform in the
frequency domain.

Table 2. Candidate models are used for model comparison. a, b and ¢ denote the weights of
the models.

Model ID Model Function

Model 1 a Rec(yp)+b Rec(y)

Model 2 a Rec(y;)+b Rec(yp)+c Rec(y:) Rec(yp)
Model 3 a Rec(y;)+b Rec(yz)+c Rec(yr Vo)
Model 4 a Sq(y1) + b Sa(y2)

Model 5 a Sq(yr) + b Sa(y2) + ¢ Sa(yi) Sa(yz)
Model 6 a Sq(yn) +b Sq(yz)+c¢  Salyr VYa)

To reduce the computer running time, we only compared the full model with Model 3
and Model 6. The posterior predictive check showed that the full model fit better than the
other two models (see Figure 6).

In the model fitting step, we used Bayesian estimation to estimate the coefficients
of each term in the model. Then, we used the mean in the posterior distribution of the
coefficients as a new parameter to simulate the model again. In terms of model comparison,
we used Akaike’s Information Criteria (AIC, a smaller value represents a better model) to
find that the full model can better fit and predict simulated data (see Figure 7). Therefore, it
can be considered that this set of polynomial linear models can explain IMs well.

In addition, the magnitude and pattern of IM responses may differ between different
experimental conditions. Traditional statistical techniques (t-test, ANOVA, etc.) are suffi-
cient to investigate differences in the magnitude of IMs between conditions. Nevertheless,
traditional statistical techniques cannot explain differences in IM patterns between condi-
tions. Multivoxel pattern analysis (MVPA), which is based on the single layer perceptron
neural network method (see Figure 8a) has recently been utilized to explore the difference
in neuroimage patterns. We consider MVPA as a powerful tool to investigate this type of
problem, although to the best of our knowledge, there are no studies yet using MVPA to
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study the application of IMs in multisensory integration. We can use part of the SNR data
of IMs to train this single-layer perceptron neural network model; and another part of the
data to test the trained model. When the test accuracy is acceptable, the model can be used
to decode new IM patterns, time-by-time (see Figure 8b).

Figure 6. Correlation plot of Simulated data 1 with Simulated data 2 for the full model and two
candidate models, where *** represents p < 0.001.

Figure 7. Akaike’s Information Criterion (AIC) for 3 models. The best model is the full model.
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Figure 8. MVPA algorithm based on single-layer perceptron neural network architecture and
decoding accuracy. (a) Input nodes x; denote the SNR or amplitude of 24 EEG channels at the
interested IM frequency. w; denotes the weight of inputs. The sigmoid function is often used as the
activation function in the single-layer perceptron neural network. Finally, by summing the weighted
signals and nonlinear activation processing, it can be inferred which experimental condition produced
the current IM pattern. (b) A simulated decoding accuracy profile, time-by-time. The solid black
line denotes the chance level of decoding accuracy. The red-shaded area and solid red line above
indicates that the single-layer perceptron neural network model can significantly distinguish under
which experimental condition the current IM pattern is generated in the current time period.

Biological-inspired computational models and model comparison can be compared
against the empirical spectrum to gain stronger support for one model than competing
models. The above example shows how one can gain insights that go beyond the existence
and measurement of neural interactions. Indeed, evidence that provides greater support for
a plausible mechanism can be obtained by comparing the results of computational models
with empirical data obtained in experiments.

4. IMs for Multisensory Perception
4.1. IMs Studies of Multisensory Perception

Compared to IMs of unisensory perception, in fact, we can receive information not
only from a single sense but also from different senses. Multisensory perceptual processes
involve hierarchical brain networks. To better understand this process, Jeffrey et al. [28] pro-
vided a great overview of how the targeted manipulation of neural activity using invasive
and noninvasive heuromodulation techniques can contribute to our understanding of mul-
tisensory processing. In this study, the authors demonstrate that multisensory integration
can be a distributed feature across cortical networks and that sensory areas traditionally
thought to be dedicated to a single modality can be multimodal. However, before we can
do that, we may need more objective neural markers for multisensory integration. In recent
years, the principle of IM is no longer limited to the problem of unisensory perception and
is increasingly used to study the interaction of multisensory perception.

Typically, the neural maker of multisensory integration has been classically iden-
tified in functional magnetic resonance imaging (fMRI) using conjunction analysis. In
con-junction analysis, multisensory integration can be inferred if commonly activated
(cluster) brain region(s) respond to input from two (or more) sensory modalities. For
example, Joassin et al. [29] used fMRI to measure brain activity while participants identified
previously learned static faces, voices, and voice-face associations. Using subtraction and
conjunction analysis between bimodal and unimodal conditions, they observed that voice—
face associations activated visual and auditory regions, as well as specific cross-modal
regions located in the left angular gyrus and right hippocampus. Furthermore, functional
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connectivity analysis con rmed the connectivity of the right hippocampus to the unimodal
area. These ndings suggest that combined faces and voices rely on brain networks that
support different aspects of integration, such as sensory input processing, attention, and
memory. Helbig et al. [ 30] investigated the neural mechanism of integrating visual and
tactile shape information through a conjunction analysis of fMRI, and subjects discrimi-
nated between bimodal (visual-tactile) or elliptical shapes presented visually alone. A 2 5
factorial design manipulated (i) the presence and absence of tactile shape information and
(ii) the reliability of visual shape information ( ve levels). They then investigated whether
regional activation of tactile shape discrimination depends on the reliability of visual shape.
The results showed that in the primary somatosensory cortex (bilateral BA2) and superior
parietal lobes, responses to tactile shape input increased when the reliability of visual
shape information decreased. Conversely, tactile input suppressed visual activation in the
right posterior fusiform gyrus when visual signals were ambiguous and unreliable. The
somatosensory and visual cortex can maintain the integration of visual and tactile shape
information through direct connections with visual areas or top-down effects from higher
order parietal regions.

However, with its effectiveness in revealing the neural underpinnings, two limitations
of conjunction analysis in investigating multisensory interaction currently are that (i) it
cannot statistically detect nonlinear interactions of neurons, where signals from one sensory
modality modulate responses evoked by the other; (ii) it cannot rule out that the regions
obtained by the conjunction analysis are driven by single sensory information. In contrast,
the presence of IMs works in a direct fashion, as it clearly shows direct evidence for
the existence of nonlinear mechanisms for multisensory interaction. Moreover, in our
perspective, the cross-modal interaction contains the interaction of mutual information,
which could be described in the framework of IMs as usually being implemented in the
visual domain. By deciphering the weighting of each piece of information (source) during
multisensory integration, it is promising to unify the causal inference modeling with IM
approaches to better account for object perception in the multisensory domain.

4.2. IMs in the Spatial and Temporal Rules of Multisensory Perception

For decades, multisensory integration has been understood to take place according to
several “rules of thumb” [ 31-33]. Among them, neural interaction responses to multsensory
stimuli tend to occur and be enhanced when different sensory stimuli information occurs
at the same location (spatial rule) and at the same time (temporal rule). The two rules
provide an empirical framework for presumed, successful multisensory integration studies
in animals as well as in brain-injured and healthy humans. These two rules may seem
simple, but they are often not well satis ed in the real world.

Spatial rules are the result of the superior colliculus, which is known as the area of
multisensory integration aligning spatial maps of different sensory information in a similar
way. The two rules have been typically summarized in two studies [34,35], realized in the
“ventriloquist effect”, which was originally demonstrated in audiovisual interactions, in
which the concurrent visual cues could bias the perception of sound location toward the
position of the visual distractor (in “spatial ventriloquism'), or the sound signal could bias
the perceived time onset for the neighboring visual target (‘temporal ventriloquism'), with
subjects even trying to ignore them. However, these two rules may seem simple, but they
are often not satis ed in reality [ 34]. Most physical events involve different information
from several sensory modalities that occur in different locations and across different points.
Compared with traditional imaging techniques, IMs can capture multisensory integration
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visual stimuli were designed to intersect at 6 Hz and 6.2 Hz (four conditions, see Figure 9).
Frequency-domain analysis results revealed an integrated component (6 + 6.2 = 12.2 Hz) of
visual and tactile information regardless of the specific spatial locations.

Figure 9. Experimental design and results. (a) Subjects’ left finger (or right finger) was continuously
vibrated at a constant frequency while subjects looked at the continuously flashing light source. The
frequencies of tactile and visual stimuli were designed to intersect at 6 Hz and 6.2 Hz. (b) Spectra in
the frequency domain. The values 12 Hz and 12.4 Hz are second-order harmonics of 6 Hz and 6.2 Hz
respectively. Additionally, 12.2 Hz is the second-order intermodulation component (1M).

Similarly, Sylvie et al. [5] used the IMs approach, which can characterize the degree
and level of multisensory integration to track cortical activity elicited by auditory and
visual inputs to explore the effect of temporal coherence on the perceptual combination of
multisensory inputs. Their results showed that auditory and visual SSEPs were significantly
enhanced in the temporally consistent condition compared to the incongruent condition.
In addition, a significant increase in the phase coherence of the two SSEPs was observed.
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Figure 8b shows, there is a significant difference between the IMs of the 0.6 s-2.1 s time
period and the 2.5 s-4.0 s time period, which means that the MVVPA model at these two time
periods can distinguish two different conditions. Furthermore, these results demonstrate
that multisensory integration is efficiently performed in the participants’ brains.

However, this time-by-time MVPA approach cannot answer the following question: Is
there a difference in the pattern of multisensory integration between these two periods in
the brain? We can answer this question with a cross-temporal MVPA approach in which
the training dataset and the test dataset are from different periods. This method can help
us explore the convergence, which is crucial for exploring the relationship between multi-
sensory perception and attention, of multisensory integration. As Figure 10 shows, there
are significant differences in the two time periods of multisensory integration mentioned
above. In the time period of 0.6-2.1 s, when the training and test datasets of IMs come from
different times, the prediction accuracy of the model is very poor, and the accuracy is large
only when the training and test datasets are from the same time (see red diagonal). The two
different experimental conditions (training vs. test) produced significantly different IMs,
and the encoding pattern of the differences between the two conditions was different from
each other time by time. This means that the multisensory integration in the time period
of 0.6-2.1 s has not yet converged. This phenomenon of moment-to-moment variation
in the encoding pattern of differences between two conditions at an early stage may be
due to adaptation of inherent, characteristic differences between the conditions [43,44].
Therefore, we propose that this time period represents the early stage of multisensory
integration, which may capture attention (bottom-up) to multisensory stimuli. In the time
period of 2.5-4.0 s, the pattern of prediction accuracy is a rectangle (see red rectangle),
which means that the prediction accuracy is high regardless of whether the training and
test datasets come from the same time span. Therefore, in this period, the encoding pattern
for the differences between the two conditions is generalized in a stable fashion. This
homogeneity of the encoding pattern of differences at each given time point may suggest
that multisensory integration has converged in this period, which may lead to the spread
of attention (top-down) [45,46].

Figure 10. A simulated decoding accuracy profile by cross-temporal MVPA.

In conclusion, the MVVPA-based IM approach can provide evidence in exploring the
relationship between multisensory integration and attention even though the underlying
details for implementation remain open to be further addressed. Additionally, as mentioned
in Section 2.3, low-order IMs are involved in low-level cognitive processing and high-order
IMs are involved in high-level cognition; it is reasonable to speculate that the theory is also
applicable to multisensory integration, even if it is not yet confirmed.
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4.4. The Role of IMs in the Diagnosis of Pathology by Brain—Computer Interface (BCI)

Brain—computer interface (BCI) systems directly translate signals generated by brain
activity into control signals. It is often used in clinical applications and is used for disease di-
agnosis. Current noninvasive brain signals from BCI include functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), functional near-infrared spectroscopy
(FNIRS) and electroencephalogram (EEG). EEG is portable, reasonably inexpensive with
good real-time response, and is technically less demanding than other modalities. That is
why it is commonly used in BCI [47].

There are significant differences in brain signals between healthy individuals and
patients with severe brain injury. Previous EEG-based BCls have often utilized unisensory
IM methods, P300 potential, and event-related desynchronization [48] to perform disease
detection. However, these BCI methods are currently facing mainly the problem of a
low accuracy of pathological detection. Li et al. [49] introduced a new technique for
disease diagnosis, namely multimodal/hybrid BCI, which combines EEG signals with other
physiological signals (such as eye gaze, electrocardiography (ECG) or electromyography
(EMGQ)) to solve the above problem.

However, this multimodal BCI method is currently far from being directly applicable to
clinical systems because the accuracy of the method is not very stable due to the very large
individual differences in patients. We cautiously propose the possibility of combining the
multisensory IM method and multimodal BCI for pathological diagnosis, which adds more
effective information about the classifier model to the original multimodal BCl method.
Therefore, this method may be beneficial to improve the accuracy of pathology detection.
In conclusion, this is still an open question.

5. Limitations and Conclusions

IM has many advantages but is not without limitations. The limitations of IM as a
method for unisensory perception and multisensory perception including (1) this technique
is essentially limited to EEG and MEG due to its inherent characteristics, which can lead
us to not be able to detect neural activities deep in the brain, (2) the IM method requires
that the stimuli in the experimental design must be frequency-dependent. (3) there is no
general summary of what cognitive processes correspond to each order of IM components
and how to pick the optimal frequency for a given type of sensory stimulus, (4) different
cognitive tasks will lead to different types of neuronal interactions, which in turn lead to the
emergence of different IMs, but there is not yet clear about how many IMs and which IM to
include when analyzing the primary frequency (f1 +f2,2 fl+f2,0or2 fl1+2 f2,etc),
and (5) We all know that IM is the embodiment of neuronal interaction at the macro level. It
is not yet known whether we can work backward from IM to the computation of neuronal
circuits at the micro level.

As stated in the introduction, to better understand the neural mechanisms of multisen-
sory perceptual integration, we need to answer not only what regions of the brain represent
multisensory perceptual integration but also the degree of multisensory perceptual integra-
tion, the type of multisensory perceptual integration and how it happened. This means that
we need to deeply and comprehensively understand the spatial, temporal, and frequency
rules of multisensory perceptual integration.

Many previous studies on animal physiology have shown that the processing of per-
ceptual integration is inherently nonlinear. However, most human neuroimaging methods
(such as fMRI etc.) relying on “subtraction” to acquire the target neural signals. Due to the
inherent linear operations in those methods, they are not suitable for studying such multi-
sensory integration studies that usually involve nonlinear processes [5]. Given that sensory
perception processes mostly occur in the sensory cortex, IM-based frequency-tagging has
a sufficient spatial resolution to investigate where multisensory integration occurs. In
addition, IMs are based on EEG technology and thus have a high temporal resolution to
answer the temporal and frequency mechanisms of multisensory integration. Although
the order of IMs can be used to explain the hierarchical structure of perceptual integration,
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in which higher-order IMs represent more higher-level interaction processing and lower-
order IMs represent more lower-level interaction processing, empirical implementation
has not yet been realized in multisensory domains. This endeavor could be pursued by
building mathematics-driven theory with computational simulations and modeling, and
by obtaining experimental and empirical data, coupled with advanced analytical methods.

In general, IMs can provide a direct and objective physiological measure of neural
interaction not only for unisensory but also for multisensory integration. Both low-level
and high-level perceptual processes (e.g., expectation, attention) can be studied using
IMs. Although the applications of IMs are less mature for multisensory integration than
unisensory integration, its potential value is immeasurable. It holds promise for unraveling
the complex hierarchies involved in various interaction processes in human brains.
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