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Abstract
Motivation: Cell membrane segmentation in electron microscopy (EM) images is a crucial step in EM image processing. However, while popu-
lar approaches have achieved performance comparable to that of humans on low-resolutionHanch.4(n)-242atasets, they have shownlimited success
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and identify the underlying causes for these differences in
performance.

During our investigation into the differences in perfor-
mance between humans and DL methods on cell membrane
segmentation, we noticed that there is a discrepancy between
human perception and commonly used evaluation criteria,
such as the F1 score (Sasaki et al. 2007), IoU (Kosub 2019),
and Betti number error (Betti) (Hu et al. 2021). For example,
in Fig. 1, (b) is the ground truth of the cell membranes in (a),
while (c) and (d) are two predictions by different algorithms.
According to the F1, IoU, and Betti scores, prediction (d) is
better than prediction (c). However, from a human perspec-
tive, the opposite is true because (d) lacks some important
structures. To better understand this discrepancy, we con-
ducted a subjective experiment in which subjects were shown
three images: the ground truth and two different predictions.
They were asked to indicate which prediction was more simi-
lar to the ground truth. We evaluated the consistency between
the preferences of these criteria and humans. Surprisingly,
results showed that these evaluation criteria are only 30%–
40% consistent with human perception.

To better understand the mechanisms of the human visual
system when comparing two images of cell membranes, we
conducted an eye movement experiment to record subjects’
saccades and fixations. In the experiment, subjects were
shown two images of cell membranes side by side, such as the
ground truth (b) and prediction (c) in Fig. 1e. Heatmaps and
arrows were used to indicate fixations and saccades, respec-
tively. Based on the data collected from eye movements, we
found that humans focus primarily on the structure of mem-
branes while using quick glances to compare other regions.
For example, the red regions of the heatmaps correspond to
junctions of cell membranes in (e) and missing edges in (f).
This suggests that humans pay more attention to the skeleton
of the cell membrane and missing edges, while ignoring

thickness and misalignment errors. Additionally, we observed
that humans use a global-local strategy and a coarse-to-fine
approach to find differences. Specifically, according to the



proposed PS-Net outperforms existing methods on all evalua-
tion criteria. We also demonstrate the versatility of our
method by applying it to natural image segmentation datasets,
where it also demonstrates state-of-the-art performance.

2 Related works

EM cell membrane segmentation, which can also be viewed
as cell boundary detection, is a critical step in EM image
analysis for neuron reconstruction. This task is more challeng-
ing than similar tasks on natural images, such as “delineation
detection,” due to the higher resolution, more complex struc-
tures, and more detailed information present in EM images.
Since the release of the first annotated EM image dataset in
the ISBI 2012 challenge (Arganda-Carreras et al. 2015), sev-
eral extraordinary DL methods have been developed for this
task. U-Net (Ronneberger et al. 2015) is a popular and suc-
cessful DL model for biomedical image segmentation.
Subsequent research efforts (Paszke et al. 2016, Chaurasia
and Culurciello 2017, Shen et al. 2017, Yu et al. 2017, Hu
et al. 2018, Khadangi et al. 2021) have sought to further im-
prove EM segmentation performance using a U-shaped en-
coder–decoder architecture and effective feature extraction
techniques, such as dual-channel blocks (Lou et al. 2021) and
skip connections (Chaurasia and Culurciello 2017). These
methods have achieved near-human performance on the ISBI
2012 dataset. However, as EM imaging techniques have ad-
vanced, the demand for the segmentation of ultra-high-
resolution images has increased. For instance, the recently
proposed U-RISC dataset (Shi et al. 2022) has a resolution of
120� 9958� 9959. When applied to this dataset, the perfor-
mance of these methods significantly decreased (from 98% on
ISBI 2012 to 60% on U-RISC). This suggests that algorithms
should not only focus on effectively extracting features from
limited labeled images, but should also incorporate human-
based strategies.

Evaluation for cell membrane segmentation. In the cell
membrane segmentation task, both pixel accuracy and topo-
graphic accuracy are important. There are three main catego-
ries of evaluation criteria (Yeghiazaryan and Voiculescu
2018) that have been proposed for image segmentation:
“pixel-wise” criteria, “topology-wise” criteria, and “point-
wise” criteria. “Pixel-wise” criteria, such as the F1 and IoU,
treat segmentation as a pixel-wise binary classification task
and use statistics to evaluate the performance of models.
These criteria are often used as optimization objectives, with
popular loss functions including the cross-entropy loss and its
variations (Chen et al. 2019, Khadangi et al. 2021), as well as
the Dice loss (Dice 1945). “Topology-wise” criteria, like V-
Rand and V-Info (Arganda-Carreras et al. 2015) consider
both merge and split errors of membranes in their evaluation.
Bs inesitstiombranes i04 TD
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provided insight into how humans visually compare images of
cell membranes, leading to the development of a new evaluation
criterion based on human perception, known as PHD.

In the design of the PHD, we consider the structural infor-
mation of cell membranes and the human tolerance for slight
misalignment. On the one hand, to capture the structural in-
formation, we represent membranes as point-sets and use the
modified Hausdorff distance (Huttenlocher et al. 1993). As
the results of eye movement experiments show, humans are
more sensitive to changes in structure than to changes in
thickness of membranes. Therefore, to alleviate the influence
of the thickness change, the PHD extracts structural informa-
tion (skeleton) from the segmentation results and represents it
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the consistency with human perception initially increased be-
fore slowly decreasing to 0, indicating that humans do have
tolerance for a certain level of offset. These results suggest
that humans tend to tolerate small perturbations in cell mem-
brane segmentation.

It is worth investigating whether using skeletonization can
improve the performance of other evaluation metrics. The
results in Fig. 3 show that using skeletonization can help
some metrics, such as F1, IoU, and ASSD, to a certain extent.
However, the consistency of F1�SK is only 34.51%, and the
consistency of IoU�SK is 44.25%. These values are still far
from the performance of PHD. This suggests that simply
extracting the membrane skeleton is not sufficient to address
the limitations of existing metrics.

5 PHD-guided segmentation network

Inspired by the PHD criterion and the global–local strategy
with a coarse-to-fine approach observed in the eye movement
experiment, we propose the PS-Net. This network includes a
multiscale architecture with loss functions specifically
designed to guide the segmentation process using PHD.

5.1 Overview of architecture

An overview of the network is depicted in Fig. 4. PS-Net con-
sists of two branches for multiscale image segmentation: the
“global branch” SG, which uses the full image as input, and
the local branch SL, which uses N patches of the cropped orig-
inal image with the same size as input. Both branches use the
same u-shaped encoder–decoder architecture to make proba-
bility predictions, as well as a module for skeleton extraction.
The global and local predictions are then combined to pro-
duce the final segmentation result.

5.1.1 Backbone
The U-Net (Ronneberger et al. 2015) is a convolutional neu-
ral network with a contracting path that captures contextual
information and an expansive path that enables precise locali-
zation. It is often used as an encoder–decoder module in im-
age segmentation tasks. In this work, the U-Net is utilized in
the global and local branches of the PS-Net for probability
prediction.

5.1.2 Skeleton extraction module
The structure extraction module of PS-Net uses the modified
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between the ground truth and predictions in both the global
and local branches. As shown in Equation (4), the function
compares the skeleton point-sets of the predictions, repre-
sented by Xglobal and Xlocal, with their respective ground
truth, represented by Yglobal and Ylocal. In order to compute
the loss for backpropagation, the soft-max function is applied
to the likelihood map for binarization and the derivative of
the binary image is shown in Supplementary Section S7.

Lphd ¼ dPHDðXglobal;YglobalÞ þ dPHDðXlocal;YlocalÞ: (4)

In addition, the similarity loss Lsim is used to measure the
similarity between the global and local scales by calculating
the PHD distance between the skeleton point-sets of the
global prediction ðXglobal and the stitched local predictions

X̂
localÞ. It is designed as Lsim ¼ dPHDðXglobal; X̂

localÞ. The

stitched local predictions X̂
local

are obtained by stitching the
skeleton point-sets Xlocal from the local branch, and have the
same size as the global skeleton point-sets Xglobal. This loss
helps to ensure that the prediction from the global branch and
the stitched prediction from the local branch are consistent in
terms of structure.

5.3 Coarse-to-fine training

During the training process, three loss functions are optimized
with a coarse-to-fine strategy, which aims to assist the net-
work focusing more on generating a coarse segmentation re-
sult, and then subsequently shifting to detailed information.
Correspondingly, in our method, Lpixel measures the accuracy
of each pixel in the image, which is the low-level (local) fea-
ture, while Lphd and Lsim measure the structural difference of
membranes, which is the high-level (global) feature. In con-
trast to the two-stage refinement approach utilized by Chen
et al. (2019), PS-Net employs pixel-wise loss for the first sev-
eral epochs as to generate a coarse segmentation result. And
then, to get a finer cell membrane structure, the weights of
PHD loss and similarity loss are adaptively raised with the
number of training epochs. Let k1 and k2 be the adaptive
weights of Lphd and Lsim. The final loss function of PS-Net L

is shown in Equation (5). The details of the parameter settings
are shown in Supplementary Section S4.2.

L ¼ Lpixel þ k1Lphd þ k2Lsim: (5)

6 Segmentation experiments

The performance of PS-Net was evaluated on two EM image
datasets. Results show that PS-Net outperforms existing
methods. Then, ablation studies were performed to isolate the
individual contributions of the main components and parame-
ters of our approach. Furthermore, PS-Net was extended to
two natural image segmentation datasets with SOTA
performance.

6.1 Experiments on EM image datasets

We evaluated our method on two EM datasets: ISBI 2012
and U-RISC. We used a 3-fold cross-validation to tune hyper-
parameters for both our proposed method and eight baseline
methods. The evaluation metrics included F1 score, IoU, V-
Rand, V-Info, TPVF, TNVF, Hausdorff distance, and our
proposed PHD-s, where s is the tolerance threshold. The base-
line methods included U-Net (Ronneberger et al. 2015),
CASENet (Yu et al. 2017), LinkNet (Chaurasia and
Culurciello 2017), GLNet (Chen et al. 2019), SENet (Hu
et al. 2018), U-Netþþ (Zhou et al. 2018), Mosin. (Mosinska
et al. 2018), and DMT (Hu et al. 2021). We report the mean
and SD performance over the test set for all the methods.
More details about the datasets, baseline models, and evalua-
tion metrics are provided in Supplementary Section S4. *
represents that the predicted results for evaluation are re-
implemented by the official code.

For the ISBI 2012 dataset, our method achieves SOTA per-
formance as reported in Table 1. We also summarized some
leading quantitative results reported in original papers in
Supplementary Sections S4.3 and S4.4. The results show that
PS-Net obtained the best scores on all of these metrics (as
shown in bold font). More visualizations of segmentation
results are depicted in Fig. 5. Our method has fewer mistakes.

Figure 4. An overview of PS-Net. PS-Net has two branches to segment multiple scales of the input image. In the global branch, the u-shape

segmentation module uses the original image as input and outputs its membrane probability map. In the local branch, the original image is cropped into N

patches with the same size. Then, the patches are put into the segmentation module with N prediction maps as outputs. The two branches share

weights during the training process. The structure extraction module is designed to compute the skeletons of the all the N predictions. Three loss

functions: pixel-wise loss, PHD loss, and similarity loss are calculated during the training. PS-Net outputs the prediction from the results of two branches.
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More visualization results are shown in Supplementary
Section S4.7.

For the U-RISC dataset, we first summarize the top four
results reported in the leaderboard of the challenge
(Supplementary Section S4.4). Our method has reached the
best performance (promote approximately 11.5% more than
the winning team in the challenge). Similar to the experiments
of ISBI 2012, to compare more results of other metrics, we
train and test the six competitive methods, using the data divi-
sion the same as the challenge. The scores and SD of eight
evaluation metrics are reported on the testing images. The
results in Table 2 show that PS-Net outperformed the other
methods. In particular, it not only greatly improves the F1
score, but also performs well in other metrics. In addition, we
observed an apparent decline of the PHD-s scores at s ¼ 10
and s ¼ 50 for ISBI 2012 and U-RISC, respectively, which
showed that the U-RISC was a more challenging dataset to
gain a fine segmentation. Compared with other methods, our

method is able to alleviate the missing structures and redun-
dant predictions (as shown in Supplementary Section S4.8).

6.2 Ablation study on U-RISC

To evaluate the effectiveness of the proposed two strategies
and three loss functions, we conducted several ablation
experiments on the U-RISC dataset.

6.2.1 PHD-based loss functions
To evaluate the effectiveness of PHD-based loss functions, we
trained the model using only the pixel-wise loss Lpixel, and
then added the PHD loss Lphd and similarity loss Lsim. The
results are presented in Table 3, where L1, L2, and L3 repre-
sent Lpixel, Lphd, and Lsim, respectively. The results show that
Lphd improved the performance of the three architectures. In
particular, the F1 score increased by �6.63% and the PHD-0
score decreased by �1.83 when using Lphd. Additionally, the
combination of Lsim with Lphd resulted in an �1.49% increase

Table 1. Quantitative results of the methods on ISBI 2012 dataset.

Metrics U-Net* CASENet* LinkNet* GLNet* SENet* U-Netþþ* Mosin.* DMT* PS-Net

F1 (%) 92.0160.02 87.9960.05 89.4060.04 90.4160.02 91.3560.02 93.0160.02 82.3060.03 92.9360.02 93.9860.02
IoU (%) 92.31 60.01 89.6160.01 91.0260.01 81.8960.02 84.2460.01 89.5660.02 90.8860.01 92.1960.01 93.9960.01
V-Rand (%) 96.3360.02 96.5360.32 96.9960.04 95.6960.07 94.5460.04 95.8160.05 95.9960.04 96.7460.06 98.3760.02
V-Info (%) 96.0160.02 96.2760.03 95.0160.04 96.5660.02 96.4260.01 97.0760.05 95.8160.05 97.8260.01 98.7560.02
TNVF (%) 94.6160.01 93.1260.02 93.0860.03 93.5260.02 92.0460.03 94.2560.03 94.6660.01 94.6760.02 94.6860.01
TPVF (%) 91.9660.04 91.7760.05 89.9460.07 91.8060.04 90.4960.03 91.4560.02 92.0460.03 92.7560.02 93.0060.04
ASSD # 2.68961.92 3.15761.13 3.92162.15 3.03662.01 3.00261.19 2.99462.05 3.01561.87 3.84561.86 2.04161.98
HD # 55.94610.4 59.87617.0 63.12628.1 83.12617.0 72.46619.4 60.35610.5 93.03619.2 84.94613.6 54.62613.8
PHD-0 # 5.95062.06 6.01361.05 5.81464.52 6.98963.57 5.36262.50 4.20563.95 4.83362.97 4.37463.19 3.95461.04
PHD-3 # 5.65062.07 5.99061.02 5.62764.66 6.88463.10 5.02862.18 4.00263.65 4.62962.54 4.08163.02 3.66161.25
PHD-5 # 3.66361.91 4.28063.82 3.63160.82 5.29963.84 3.71662.11 3.76963.02 3.89461.18 3.35162.44 3.04261.53
PHD-10 # 2.41461.08 2.99762.05 2.14661.07 3.01762.58 2.63161.98 2.87761.94 2.51061.01 1.99362.31 1.04560.99
PHD-50 # 0.28060.01 0.24160.03 0.35160.02 0.2660.017 0.29160.02 0.23860.03 0.27460.03 0.28660.04 0.24460.01

The boldface values indicate the best performance.

Figure 5. Segmentation results of ISBI 2012 (first two rows) and U-RISC (last two rows) datasets. Red arrow: false negative error. Blue arrow: false

positive error.
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in the F1 score and a decrease of �0.78–1.176 in the PHD
score. This indicates that the structure of the cell membrane
plays an important role in its segmentation. Furthermore, for
the selection of the tolerance, we conducted the ablation
experiments summarized in Supplementary Table S5. The
results show that PS-Net achieves the best performance when
s¼2. Further, we also compared the PHD loss with another
topology loss, clDice loss (Shit et al. 2022), in Supplementary
Table S6, and the results verify the superiority of PHD loss.

6.2.2 Global–local strategy
To investigate the effectiveness of the global–local strategy,
we conducted experiments using three architectures: SG, SL,
and SGþSL. Results presented in Table 3 indicate that the
combined approach of SGþSL outperforms either SG or SL

alone. When using only pixel-wise loss, the F1 score of SGþSL

is 59.57% compared to 51.57% for SG and 58.23% for SL.
Similar improvements were observed on other evaluation cri-
teria. These results suggest that the global–local strategy can
be advantageous in segmentation, as it not only increases the
local accuracy but also alleviates the global structure distance.
Moreover, to provide further insight into the impact of PS-
Net, we have illustrated the feature visualization in
Supplementary Fig. S6 and conducted an attribution analysis
for the global–local strategy in Supplementary Fig. S9. Our
results indicate that the model trained with this strategy is
able to capture more structural information, with a larger
number of pixels contributing significantly to the prediction.
These findings suggest that the global–local strategy enables
the network to effectively utilize features of larger regions,
thereby improving the segmentation performance. Due to
space limitations, we have provided additional information in
the Supplementary Materials.

6.2.3 Coarse-to-fine strategy
Additionally, the experiments were conducted to explore the
effectiveness of the coarse-to-fine strategy by varying the
parameters k1, k2, and k, as presented in Table 3 and
Supplementary Table S5. The results indicate that gradually
increasing the weights of the similarity loss and PHD loss
resulted in improved segmentation performance. Notably,
when the epoch is set to five, the introductions of the similar-
ity loss and PHD loss yielded the best performance. These
findings suggest that the coarse-to-fine strategy, with appro-
priate parameter tuning, can effectively improve the accuracy
of segmentation tasks.

6.3 Experiments on natural image datasets

We further extend PS-Net to two natural image datasets:
“Road” (Mnih 2013) and “CrackTree” (Zou et al. 2012).
For evaluation, Pixel-wise accuracy, ARI, VOI, and Betti are
chosen for comparison [reported by (Hu et al. 2021)]. The
results in Table 4 also show that our work has SOTA perfor-
mance. It is worth mentioning that PS-Net obtained a much
better VOI score (0.5117) on the Road dataset.

7 Conclusions

In this study, we propose a novel criterion PHD and a PHD-
based network for the task of cell membrane segmentation in
EM images. The motivation for this approach arose from the
discrepancy between commonly used metrics and human eval-
uations of segmentation results. To gain insight into the way
humans analyze differences between segmentations, we con-
ducted eye movement tracking experiments. These experi-
ments revealed that humans utilize “global-local” and
“coarse-to-fine” strategies in this process. Based on these
observations, we incorporated these strategies into our model

Table 2. Quantitative results of the methods on U-RISC dataset.

Metrics U-Net* CASENet* LinkNet* GLNet* SENet* U-Netþþ* Mosin.* DMT* PS-Net

F1 (%) 48.8360.02 60.0760.05 60.7060.04 58.1060.04 52.1260.05 60.3060.05 47.5660.09 39.6860.05 67.6960.02
IoU (%) 32.3360.02 43.0760.05 43.6960.05 41.0560.04 35.4160.05 43.2960.04 40.2960.08 37.9860.06 43.6360.03
V-Rand (%) 49.3860.03 59.2160.05 63.1060.04 53.4160.04 52.8860.05 62.1160.04 49.7560.05 50.3760.04 68.9360.02
V-Info (%) 51.2060.04 60.1360.04 62.3960.03 54.3360.04 51.7860.06 62.3460.04 58.6460.03 59.2760.05 65.3260.03
TNVF (%) 88.6260.02 96.2260.05 96.0260.03 95.7260.04 97.6860.05 95.9260.03 94.2560.05 96.3160.04 97.8260.02
TPVF (%) 35.2460.03 56.0460.04 55.6260.04 53.3960.04 52.91 60.04 54.9360.04 54.9960.03 53.7760.05 56.1760.03
ASSD # 10.1668.14 9.31463.51 9.20164.43 11.9669.45 12.1166.34 9.10664.52 19.67610.3 13.0468.45 7.80864.15
HD # 271.5631.1 566.1632.2 352.9629.9 399.3639.1 547.3638.0 414.0631.9 484.6651.5 683.9682.4 252.8630.2
PHD-0 # 18.6569.72 19.2569.33 22.7266.93 23.3066.46 20.4265.22 17.2567.33 24.5468.98 29.5669.57 15.2965.79
PHD-3 # 17.9368.52 19.01610.2 22.7066.92 23.1566.05 19.8666.13 16.9968.21 24.2667.38 29.5668.48 15.0166.29
PHD-5 # 17.3766.25 16.7269.15 20.4167.81 21.2565.74 17.47610.0 16.5567.01 22.8568.62 28.78610.3 13.5265.03
PHD-10 # 8.51265.10 10.3866.99 11.9068.66 11.5366.03 9.9367.23 8.9966.72 19.4867.29 18.6766.27 6.97966.67
PHD-50 # 6.50161.17 10.2565.64 5.43662.82 5.17064.62 3.20162.53 4.31262.97 15.4766.13 14.5266.29 1.59462.06

The boldface values indicate the best performance.

Table 3. Ablation study for the architectures and loss functions of PS-Net on U-RISC dataset.

Method L1 L2 L3 F1 (%) V-Rand (%) V-Info (%) PHD-0# PHD-5# PHD-10# PHD-50#

SG � 51.57 53.01 53.92 21.61 19.59 10.42 7.227
SL � 58.23 56.94 57.05 23.53 20.41 12.92 8.039
SG þ SL � 59.57 58.71 59.80 20.91 17.04 9.367 6.294
SG � � 53.81 54.78 54.79 17.58 16.11 8.829 3.142
SL � � 61.98 63.62 61.03 17.14 16.32 8.994 3.035
SG þ SL � � 66.20 67.24 65.00 16.07 15.21 7.878 2.770
SG þ SL � � � 67.69 68.93 65.32 15.29 13.52 6.969 1.594

The boldface values indicate the best performance.
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through the use of separate global and local networks and the
inclusion of PHD-based losses after initializing training with
pixel-wise loss. Our proposed method was evaluated on sev-
eral public EM and natural image datasets with consistently
high performance.
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