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Historically, in many perceptual learning experiments,
only a single stimulus is practiced, and learning is often
specific to the trained feature. Our prior work has
demonstrated that multi-stimulus learning (e.g.,
training-plus-exposure procedure) has the potential to
achieve generalization. Here, we investigated two
important characteristics of multi-stimulus learning,
namely, roving and feature variability, and their impacts
on multi-stimulus learning and generalization. We
adopted a feature detection task in which an oddly
oriented target bar differed by 16° from the background
bars. The stimulus onset asynchrony threshold between
the target and the mask was measured with a staircase
procedure. Observers were trained with four target
orientation search stimuli, either with a 5° deviation
(30°–35°–40°–45°) or with a 45° deviation
(30°–75°–120°–165°), and the four reference stimuli
were presented in a roving manner. The transfer of
learning to the swapped target–background orientations
was evaluated after training. We found that
multi-stimulus training with a 5° deviation resulted in
significant learning improvement, but learning failed to
transfer to the swapped target–background
orientations. In contrast, training with a 45° deviation
slowed learning but produced a significant
generalization to swapped orientations. Furthermore, a
modified training-plus-exposure procedure, in which
observers were trained with four orientation search
stimuli with a 5° deviation and simultaneously passively
exposed to orientations with high feature variability (45°
deviation), led to significant orientation learning
generalization. Learning transfer also occurred when the
four orientation search stimuli with a 5° deviation were
presented in separate blocks. These results help us to
specify the condition under which multistimuli learning
produces generalization, which holds potential for
real-world applications of perceptual learning, such as
vision rehabilitation and expert training.

Introduction

Visual perceptual learning refers to a long-term
performance improvement in visual tasks owing to
repeated practice (Lu & Dosher, 2022; Sagi, 2011;
Watanabe & Sasaki, 2015). Historically, in many
perceptual learning experiments, only a single stimulus
condition (e.g., a speci�c orientation) is practiced
and learning is often speci�c to the trained feature
and retinal location (Karni & Sagi, 1991). Taking
orientation discrimination learning as an example,
performance improvement does not transfer to
an untrained orthogonal orientation or untrained
retinal location (Schoups, Vogels, & Orban, 1995).
Such feature and location speci�cities coincide with
orientation selectivity and retinotopic representation
of the primary visual cortex (V1) (Hubel & Wiesel,
1959, Hubel & Wiesel, 1962), which has inspired
researchers to interpret perceptual learning as a result
of training-induced changes speci�c to the subset of
V1 neurons encoding the trained stimulus (Karni &
Sagi, 1991; Schoups et al., 1995; Teich & Qian, 2003) or
improved readout of early sensory signals speci�cally
activated by the trained stimulus (Dosher & Lu, 1998;
Law & Gold, 2008).

However, speci�city is a potential problem for
practical settings and thus researchers have been
heavily invested in exploring methods to overcome this
obstacle. Growing research has shown that the degree
of learning speci�city is in�uenced by a diversity of
factors, such as task di�culty or precision (Ahissar
& Hochstein, 1997; Jeter, Dosher, Petrov, & Lu,
2009; Liu, 1999), training amount (Aberg, Tartaglia,
& Herzog, 2009; Jeter, Dosher, Liu, & Lu, 2010),
stimulus complexity (Bakhtiari, Awada, & Pack, 2020;
McGovern, Webb, & Peirce, 2012), state of adaptation
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(Harris, Gliksberg, & Sagi, 2012), spatial attention
(Donovan & Carrasco, 2018; Donovan, Szpiro, &
Carrasco, 2015), training task and psychophysical
methods (Green, Kattner, Siegel, Kersten, & Schrater,
2015; Xiong, Xie, & Yu, 2016), and feature reliability
(Yashar & Denison, 2017). For example, in a seminal
work by Ahissar and Hochstein (1997), training
on an odd-element detection task leads to either
orientation-speci�c or orientation-general learning,
depending on the di�culty of the training conditions.
Training with odd elements that di�ered from the
background elements slightly (e.g., by 16°, a hard task)
leads to much more speci�c learning. In contrast,
training with odd elements that di�ered greatly from the
background elements (e.g., by 90°, an easy task) leads
to a signi�cant generalization of learning. It should
be noted that
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there are two intertwined sources of variability,
numerosity (set size, such as when learning from more
or fewer distinct examples) and heterogeneity or feature
variability (di�erences between examples). Although
numerosity is often taken as a proxy for feature
variability, with increased numerosity usually indicating
greater feature variability between stimuli (Arnold &
Auvray, 2018), these two sources of variability do not
necessarily have to align. A few studies have attempted
to experimentally tease the two sources of variability
apart to explore their relative roles in multi-stimulus
learning generalization (Bowman & Zeithamova, 2020;
Poletiek & van Schijndel, 2009; Schi�, Ashkenazi,
Kahta, & Sasson, 2021). For example, in grammar
learning, it has been found that the main predictor
of generalization is the diversity of the stimulus set
used in the training phase and its statistical coverage
of the grammar, but not the mere size of the set
(Poletiek & van Schijndel, 2009; Schi� et al., 2021).
Similarly, in category learning, high set coherence
leads to better generalization, whereas set size has little
e�ect (Bowman & Zeithamova, 2020). However, in the
domain of visual perceptual learning, there remains a
lack of evidence to clarify the relative contribution of
numerosity and feature variability to multi-stimulus
learning generalization.

Here we adopted a feature detection task in which
target odd elements di�ered from the background
elements by 16° (hard task as in Ahissar & Hochstein,
1997). We also adopted the single interval staircase
procedure to measure the SOA threshold as in our
previous study (Zhang et al., 2010). In the current
study, observers were trained with multiple target
orientation search stimuli presented in a roving or block
manner. After training, the transfer of learning to the
swapped target–background orientations was evaluated.
Additionally, we manipulated the feature variability
(the deviation between two levels of a feature) by
changing the deviation of four orientation search
stimuli: either with a 5° deviation (30°–35°–40°–45°)
or with a 45° deviation (30°–75°–120°–165°). We aimed
to investigate two primary questions. First, we sought
to understand whether roving prevents learning from
occurring in a relatively complex visual task, a feature
detection task. Second, we tried to clarify the relative
contribution of numerosity and feature variability
to multi-stimulus learning generalization. Our results
showed that learning multiple feature stimuli in a
roving way did not prevent learning from occurring.
Interestingly, multi-stimulus learning with high feature
variability (45° deviation) showed much more learning
transfer to the swapped orientations than that with
low feature variability (5° deviation) (Conditions 1 and
2). For the 5° deviation condition, learning transfer
occurred when observers were passively exposed to
orientations with high feature variability (Condition
3) or when di�erent reference stimuli were presented

in separate blocks (Condition 4). These results help us
to specify the condition under which multi-stimulus
learning produces generalization, which is particularly
important for real-world applications of perceptual
learning, such as vision rehabilitation and expert
training.

Methods

Observers and apparatus

A total of 32 observers (undergraduate students in
their early 20s) with normal or corrected-to-normal
vision participated in this study. All were inexperienced
in psychophysical experiments and were unaware of the
purposes of the study. This study was approved by the
Peking University Institution Review Board. Informed
consent was obtained from each observer before
testing.

The stimuli were generated with Psychtoolbox-3
software (Pelli, 1997) and presented on a 21-inch
Sony G520 color monitor (1024 × 768 pixels; 0.37 ×
0.37 mm per pixel; 120 Hz frame rate; 50 cd/m2 mean
luminance). A chin and head rest helped to stabilize
the head of an observer. The viewing was binocular at
a distance of 2 m. Experiments were run in a dimly
lit room. Responses were collected via the computer
keyboard.

Stimuli and procedure

The feature detection task mainly consisted of
a search stimulus and mask stimulus, which were
similar to those used by Ahissar and Hochstein (1997)
(Figure 1a). The search stimulus was a bar array.
The array consisted of 7 × 7 white bars (22.2 ×
1.3 arcmin each) with an interbar distance of 42.5
± 3.9 arcmin. In one-half of the trials, the search
stimulus was composed of target and background
orientations. The target was an oddly oriented bar
placed at either the second or the sixth bar location
of the middle row of the array. The background
was other uniformly oriented bars. The target always
di�ered from the background by 16°. In the other
one-half of the trials, the search stimulus included
only background orientation with all 7 × 7 white
bars uniformly oriented. The search stimulus was
followed, at various SOAs, by a mask stimulus that
was also a 7 × 7 array, with each element containing
one pair of white bars oriented at the target and
background orientations, and the other pair rotated by
90°.

The feature detection threshold was measured with a
single interval staircase procedure, which was adopted
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Figure 1. Stimuli and experimental schedule. (a) Stimulus configuration of the feature detection task at trained target–background
orientations (46° vs 30°) and mask. The odd element (target) could appear at one of two positions (indicated by red circles that were
not present in the actual stimuli). The dashed circle indicates the target. (b) Stimulus at untrained target–background swapped
orientations (30° vs 46°). The red circle was not present in the actual stimulus. The dashed circle indicates the target. (c) Experiments
were conducted over six sessions, with one session per day. Each session comprised 6 blocks, resulting in a total of 36 blocks.
Observers experienced a pretest with the orientations to be trained (block 1), followed by additional practice blocks until the post-test
of the trained orientations (block 33) in session 6. Subsequently, observers were immediately tested with the swapped orientations in
block 34 and continued practicing the swapped orientations for two additional blocks (blocks 35–36) to assess further improvements.

from our previous study (Zhang et al., 2010). Each
trial started with a 200-ms �xation display followed
by the presentation of the search stimulus for 8.3 ms,
which was followed by a 92-ms mask stimulus display
(e.g., Figure 1a). SOA between the search stimulus and
the mask stimulus was variable. Following the mask
stimulus, the screen went blank until the observer made
a response. Observers were asked to report whether the
search stimulus array contained an odd element (50%
trials) by pressing one of two designated keyboard
keys (1 for present and 2 for absent). Observers were

instructed to respond as accurately as possible without
speed stress. The intertrial interval was 500 ms. To
maintain consistency in data collection, auditory
feedback was provided immediately after incorrect
responses throughout the entire experiment (including
training and test sessions), which was consistent with
Ahissar and Hochstein (1997).

A classical three-down-one-up staircase rule that
resulted in a 79.4% convergence level was used to
measure the feature detection threshold. The initial
SOA values were su�ciently large that the observers
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Orientation deviation Presentation order Training paradigm

Condition 1 5° deviation Roving Training
Condition 2 45° deviation Roving Training
Condition 3 5° deviation Roving Training plus exposure
Condition 4 5° deviation Block Training

Table 1. Study design. The key differences between the four training conditions exist in the orientation deviation of the four
orientation search stimuli, the presentation order of the four orientation search stimuli, and the training paradigm.

could always make a correct discrimination. The
step size of the staircase was 0.05 log units. Each
staircase consisted of four preliminary reversals and six
experimental reversals. A reversal occurs if the stimulus
value moves up when it was last moved down, or vice
versa. The geometric mean of the six experimental
reversals was taken as the threshold for each staircase
run.

Experimental design

This study consisted of four training conditions
conducted in separate groups of observers. In all
four training conditions, with a limited number of
exceptions noted below, observers underwent six
sessions, with each session consisting of six blocks
(Figure 1c). Each session was conducted on a separate
day and lasted approximately 1.0 to 1.5 hours. During
the training phase, observers repeatedly practiced 4
di�erent orientation search stimuli for 33 blocks, with
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and the comparisons of swapped versus pretraining
SOA thresholds, respectively, for all observers, which
were presented in a scatterplot along a unit slope line
(x = y) and each point re�ected one orientation search
stimulus for each observer. If data points accumulated
under the line, then SOA thresholds were lower at the
post-test than at the pretest, indicating obvious learning
or transfer.

Figure 2c shows MPI for eight observers and
individual percent improvements on trained and
swapped orientations respectively. Signi�cant learning
for the trained orientations were obtained after training,
as the threshold improvements were signi�cantly higher
than zero (Figure 2c), MPI_trained = 79.2 ± 3.6%,
t7 = 21.71, p < 0.001, Cohen’s d = 7.68. These results
suggested that perceptual learning was evident when
four orientation search stimuli with a 5° deviation
were practiced in a roving order. However, the percent
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Thresholdpost_ B165°/T181° = 185.6 ± 52.0 ms,
Thresholdswapped_ B181°/T165° = 118.2 ± 36.2 ms. These
results con�rmed the results reported by Yashar and
Denison (2017), showing the transfer depending on the
orientation of the target, with full transfer of learning
from near-cardinal to oblique targets, but not the
reverse.

To exclude the possibility that transfer of learning
in 45° deviation (Condition 2) and speci�city in 5°
deviation (Condition 1) was not due to learning with
di�erent deviations, but was due to that swapped
orientation in 45° deviation was easier to transfer
than that in 5° deviation, we had four observers in 45°
deviation perform the untrained 5° deviation condition
besides the swapped orientations during the post-test
session. Their thresholds in untrained 5° deviation
condition (average = 143.9 ± 24.6 ms) were not
signi�cantly di�erent from their thresholds of trained
orientations (average = 178.8 ± 21.6 ms), because
their percent threshold improvements in untrained 5°
deviation condition were insigni�cantly di�erent from
that of trained orientations, MPI_5° deviation = 78.4 ±
1.3%, MPI_trained = 72.7 ± 2.1%, t3 = 2.18, p = 0.12,
Cohen’s d = 1.09, indicating that learning for 45°
deviation condition could also transfer to a 5° deviation
condition. Therefore, it was the learning with di�erent
deviations but not the transfer test with di�erent
deviations that led to di�erent transfer e�ects.

Condition 3: The TPE procedure may alleviate
the learning specificity of four roving
orientation search stimuli with a 5° deviation

Previously, we have demonstrated that using a TPE
procedure, in which observers were trained at one
orientation and either simultaneously or subsequently
passively exposed to the untrained orientation with
an irrelevant task, perceptual learning completely
transferred to the untrained orientation in tasks known
to be orientation speci�c (Zhang et al., 2010). We
expected that passive exposure to high-variability
features would facilitate low-variability feature learning
transfer to untrained orientations. In Condition 3, we
adopted a modi�ed TPE procedure, in which observers
were trained with four orientation search stimuli with 5°
deviation in a roving order and simultaneously passively
exposed to orientations with 45° feature variability, to
see whether the orientation speci�city in a 5° deviation
condition as Condition 1 showed could be eliminated.

Eight new observers were trained with four
orientation search stimuli in the 5° deviation condition
in a roving way as in Condition 1 (background
orientations were 30°, 35°, 40°, and 45°). Besides,
they were simultaneously exposed to four background
orientations with 45° deviation (e.g., 30°, 75°, 120°,
and 165°) in alternative blocks. In the exposure task,
the observers were asked to judge whether the stimuli

were bars (uniformly oriented at the background
orientations without the odd element presented in 80%
of trials) or circles (20% of trials) in each 60-trial block
(Figure 4a). The TPE procedure was performed in
the same session from the second to the �fth session.
Changes in block-by-block SOA thresholds are shown
in Figure 4b. The average thresholds of eight observers
at the pretest, post-test of trained orientations, and
swapped orientations were 454.8 ± 55.6 ms, 83.0 ±
24.6 ms, and 159.0 ± 43.0 ms, respectively (Figure 4b).
An exponential �t y = y0 − a (1 − e − x/τ ) to the data
revealed time constants (τ ) of 14.9 blocks, indicating a
relatively slow learning process. Figure 4d shows the
comparisons of the post-training versus pretraining
and the comparisons of swapped versus pretraining
SOA thresholds, respectively, for all observers.

Signi�cant learning for the trained orientations was
obtained after training, as the threshold improvements
were signi�cantly greater than zero (Figure 4c),
MPI_trained = 83.4 ± 3.1%; t7 = 26.70, p < 0.001,
Cohen’s d = 9.44. Meanwhile, the accuracy of the
exposure task was always near 100%, indicating that
observers performed well in the exposure task. The
threshold improvements of swapped orientations
were also signi�cantly di�erent from zero (Figure 4c),
MPI_swapped = 68.3 ± 5.9%, t7 = 11.48, p < 0.001,
Cohen’s d= 4.06, but were signi�cantly lower than those
of trained orientations (Figure 4c), t7 = 2.86, p = 0.024,
Cohen’s d = 1.01, indicating that the learning e�ect
showed incomplete transfer to the swapped orientations
with themodi�ed TPE procedure. Continued training of
the swapped orientations produced insigni�cant further
improvements (Figure 4b), MPI_block 36/block 34 = 12.4
± 8.9%, t7 = 1.40, p = 0.21, Cohen’s d = 0.49,
suggesting substantial learning transfer to the swapped
orientations has occurred after the TPE training.

Condition 4: Perceptual learning of four
orientation search stimuli with a 5° deviation in
a blocked condition

Previous studies have shown that learning occurred
when multiple stimuli were presented in a �xed order,
but not in a random order (roving) (Kuai et al.,
2005; Yu, Klein, & Levi, 2004; Zhang et al., 2008). In
addition, it has been shown that training schedules,
such as when learning from the same examples,
but under more or less varied practice schedules,
had an impact on learning and transfer (Raviv et
al., 2022). Training with four roving orientations
with a 5° deviation in Condition 1 might contain
cross-trial uncertainty. Such uncertainty might be
available and even become stronger at the swapped
target–background orientations, leading to orientation
speci�city. We speculated that the presentation of
�xed order might reduce the cross-trial uncertainty
and increase the feature variability. Therefore, training
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con�rming that learning multiple roving stimuli with
low variability led to learning speci�city to trained
orientations.

Discussion

In the current study, we observed that roving did
not prevent the acquisition of multiorientation feature
detection learning. More important, the feature
variability of these stimuli played a crucial role in
the generalization of learning when presented in a
roving order. Speci�cally, roving stimuli with high
feature variability (45° deviation) exhibited signi�cant
transfer e�ects to the swapped orientations, unlike
those with low feature variability (5° deviation).
Additionally, passive exposure to orientations with
high variability using a modi�ed TPE procedure or
presenting the four target orientation search stimuli
in separate blocks facilitated the transfer of learning
with low feature variability to the swapped orientations.
These �ndings help to specify the conditions under
which multi-stimulus learning leads to generalization,
potentially inspiring the development of e�cient
training paradigms in clinical settings.

We demonstrated that multi-stimulus learning in
a relatively complex feature detection task is evident
even when di�erent stimuli are presented in a roving
manner. These results are unlike the evidence in simple
discrimination tasks involving low-level visual features
like contrast and orientation, in which perceptual
learning occurs only when multiple stimuli are
presented in a �xed order (e.g., blocked condition),
but not in a roving order (Adini, Wilkonsky, Haspel,
Tsodyks, & Sagi, 2004; Yu et al., 2004; Nahum et
al., 2010).
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deep neural network model designed by Wenliang
and Seitz (2018) under high and low task-irrelevant
variability conditions, indicating that the networks
develop invariant representations of the task-irrelevant
feature when trained with highly varied inputs. These
invariant neurons are more prevalent in the higher-order
visual cortex, where neurons also have larger receptive
�elds. So far, the locus of perceptual learning is still
inconclusive. Vogels (2023) indicated that the di�erent
results between earlier investigations (Schoups, Vogels,
Qian, & Orban, 2001; Yang & Maunsell, 2004) on
the role of region V1 in learning �ne orientation
discrimination may be in�uenced by the stimulus
variability in perceptual learning. This point resonates
with the viewpoint of Maniglia and Seitz (2018),
suggesting that “the distribution of learning across the
neural system depends upon the details of the training
procedure and the characteristics of the individual
being trained.”

How perceptual training parameters impact the
generalizability of learning is of sustained importance
to the �eld of visual perception (Lu & Dosher,
2022). Here we show one kind of training parameter,
feature variability, impacts learning generalization
in multi-stimulus learning. Why does high feature
variability lead to generalization? Training with a
single stimulus or low-variability stimuli may recruit a
limited neural population (Fahle, 2004) and unwittingly
promote the over�tting of speci�c stimuli (Sagi,
2011). One related explanation is that speci�city
is a consequence of sensory adaptation owing to
repeated stimulation. Harris et al. (2012) reported that
generalization occurs when task-irrelevant dummy
trials are inserted between the main task, which is
equivalent to adding task-irrelevant variability. They
propose that counteracting adaptation arising during
prolonged training is bene�cial for generalization.
Changing the orientation from 5° (Condition 1) to
45° deviation (Condition 2) or adding task-irrelevant
variability (Condition 3) probably alters intertrial
adaptation e�ects, with less sensory adaptation in
Conditions 2 and 3. Therefore, reduced adaptation in
these two conditions during training most likely results
in learning generalization. Another explanation from
category learning suggests that exposure to too few
instances increases the likelihood that the experienced
items are not representative of the category and are
insu�cient for determining which characteristics
predict category membership (Raviv et al., 2022). In
contrast, exposure to stimuli with high variability helps
the brain to approximate the real distribution in the
world, leading to a higher probability of generalizing
outside the examples’ range (Tenebaum & Gri�ths,
2001; Xu & Tenenbaum, 2007).

We found that transfer occurred in a 5° deviation
condition when stimuli were presented in a �xed order
rather than in roving order, although roving did not
prevent learning from occurring. These results align

with prior research indicating that training schedules,
such as the order in which examples are presented
or the interval between them, in�uence learning
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to learn (Bavelier et al., 2012; Kattner et al., 2017).
Recently, Cochrane and Green (2021) di�erentiated
two ways of generalization—direct transfer and
learning to learn—by examining the functional form of
learning generalization, in a time-dependent fashion,
in conjunction with an investigation of the functions
characterizing initial learning. Future investigations on
learning and generalization should carefully study the
functional form of perceptual learning on the by-person
and by-trial levels, where the mechanisms of learning
are expected to act.

Our study could help to optimize training procedures
in real-world applications of perceptual learning. A
growing body of research has demonstrated the bene�ts
of perceptual training for people with visual de�cits,
such as amblyopia (Levi & Polat, 1996; Liu & Zhang,
2018, 2019; Zhang et al., 2014), macular degeneration
(Chung, 2011; Maniglia et al., 2016), cortical blindness
(Das, Tadin, & Huxlin, 2014; Herpich et al., 2019),
presbyopia (Polat et al., 2012), and dyslexia (Gori, Seitz,
Ronconi, Franceschini, & Facoetti, 2016). In addition,
numerous approaches aim to exploit perceptual
learning in the development of expert training, such as
athletes (Appelbaum & Erickson, 2018; Deveau, Ozer,
& Seitz, 2014), and medical experts (Kellman, 2013).
However, speci�city could be a major obstacle to an
e�ective training procedure (Bavelier et al., 2010; Levi
& Li, 2009). Fortunately, studies have shown that the
multi-stimulus training approach to perceptual learning
can increase generalization (Deveau, Lovcik et al.,
2014; Deveau & Seitz, 2014; Fulvio, Green, & Schrater,
2014), ameliorate the e�ects of presbyopia and provide
a promise to improve visual function for individuals
su�ering from low vision (Deveau & Seitz, 2014). In
terms of the application of perceptual learning (Lu,
Lin, & Dosher, 2016), for better generalization, future
training procedures should be taken into account using
multiple stimuli with high or clear feature variability to
counteract overtraining.

Keywords: perceptual learning, feature variability,
roving, specificity, transfer
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