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A B S T R A C T

Visual perceptual learning often requires a substantial number of trials to observe significant learning effects. 
Previously Amar-Halpert et al. (2017) have shown that brief reactivation (5 trials/day) is sufficient to improve 
the performance of the texture discrimination task (TDT), yielding comparable improvements to those achieved 
through full practice (252 trials/day). The finding is important since it would refine our understanding of 
learning mechanisms and applications. In the current study, we attempted to replicate these experiments using a 
larger number of observers and an improved experimental design. Using between-group comparison, we did find 
significant improvements in the reactivation group and the full-practice group as Amar-Halpert et al. (2017)
showed. However, these improvements were comparable to those of the no-reactivation group with no exposure 
to the TDT task over the same period. Importantly, our within-group comparison showed that both the reac
tivation and no-reactivation groups exhibited additional significant improvements after further practicing the 
TDT task for an additional three days, demonstrating that the full-practice effect was significantly superior to the 
effects of brief memory reactivation or simple test–retest. Besides, when refining the constant stimuli method 
with fewer stimulus levels and more trials per level, we still observed comparable improvements brought by the 
reactivation and no-reactivation groups. Therefore, our results suggested that brief memory reactivation may not 
significantly contribute to the improvement of perceptual learning, and traditional perceptual training could still 
be a necessary and effective approach for substantial improvements.

1. Introduction

Visual perceptual learning refers to performance improvement on 
visual tasks through training (Lu & Dosher, 2022; Sagi, 2011; Watanabe 
& Sasaki, 2015). It has shown powerful real-world applications in 
improving the sensory performance of healthy individuals and rehabil
itating clinical populations with various types of vision loss, such as 
amblyopia (Levi & Polat, 1996; Zhang et al., 2014), macular degener
ation (Plank et al., 2014), and cortical blindness (Das et al., 2014; 
Herpich et al., 2019). However, a significant limitation of perceptual 
learning’s practical applications is that it usually requires a long period 
of extensive practice for adequate performance enhancement (Jeter 
et al., 2010; Li et al., 2008). For example, a healthy adult’s performance 
usually reaches a plateau after practicing for 5–10 daily sessions in a 
texture discrimination task (Karni & Sagi, 1991; Wang et al., 2013). 
Additionally, patients with vision impairments like cortical blindness, a 
form of vision loss caused by primary visual cortex damage, require 
months of daily practice to restore normal performance on a motion 
integration task in the blind field, making the training difficult to attain 

and sustain (Das et al., 2014; Huxlin et al., 2009).
Amar-Halpert et al. (2017) previously reported that brief reac

tivation of encoded visual memories was sufficient to improve visual 
perception. This study is grounded in the reactivation-reconsolidation 
framework, which claims that memories remain dynamic even after 
initial consolidation. Reactivation of memory through exposure to 
salient training stimuli can induce destabilization, triggering a recon
solidation process during which memories become susceptible to 
modification and can be enhanced or impaired (Lee et al., 2017). In the 
study of Amar-Halpert et al. (2017), observers in the reactivation group 
performed a texture discrimination task with 252 trials on day 1 to 
encode and consolidate memory. Subsequently, memory reactivation 
was conducted with only 5 trials for three consecutive days. The results 
showed that brief reactivations were sufficient to improve memory, as 
evidenced by the significant learning outcomes observed in the post-test 
on day 5, which were comparable to those of the full-practice group that 
performed the task with 252 trials per day. Besides, the reactivation 
group outperformed a no-progress control condition measuring two- 
session learning without memory reactivations (day 1 to day 2 in the 
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full-practice group). They also established far-threshold reactivation and 
no-reactivation groups with pre-test and post-test spaced nine days apart 
and consistently found that the former outperformed the latter.

Several investigations using task interference have suggested the 
reactivation and reconsolidation process in perceptual learning (Bang 
et al., 2018; Dayan et al., 2016; Herszage & Censor, 2017; Huang et al., 
2023; Shibata et al., 2017; Walker et al., 2003). For example, Bang et al. 
(2018) demonstrated that reconsolidation did occur after reactivation in 
visual perceptual learning. They asked observers to practice the detec
tion of two orientations in a blockwise manner and found that the timing 
between the blocks (either short: 0 h or long: 3.5 h) led to either inter
ference and performance decline, or no interference and performance 
improvement. These results suggested that reconsolidation occurred 
during the 3.5-hour interval following the reactivation of the trained 
orientation detection task. To the best of our knowledge, Amar-Halpert 
et al. (2017) is the first study reporting the reconsolidation phenomenon 
in the domain of visual perceptual learning. The finding of Amar-Halpert 
et al. (2017) is significant as it has challenged the fundamental principle 
of procedural learning theory, which states that practice makes perfect. 
Instead, their finding suggests a more efficient mechanism underlying 
improvement in visual perception, which has far-reaching clinical ap
plications. The same research team has also generalized these results to 
other fields of procedural learning, including motor skill learning 
(Herszage et al., 2021), numeric domain (Schrift et al., 2022), and 
clinical populations like individuals with autism (Klorfeld-Auslender 
et al., 2022). This generalization across different memory fields and 
populations has great theoretical significance for the reconsolidation 
theory itself, given that the reconsolidation phenomenon has predomi
nantly been based on Pavlovian fear-conditioning models in rodents 
since its initial discovery (Lee et al., 2017; Misanin et al., 1968; Nader 
et al., 2000; Schneider & Sherman, 1968).

More recently, Chen and de Beeck (2021) have investigated to what 
extent the similar effects of reactivation as Amar-Halpert et al. (2017)
have shown in the texture discrimination task could be found in a 
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Procedure. A standard trial of the texture discrimination task in the 
current study was nearly identical to that of Amar-Halpert et al. (2017). 
Each trial began with a 400 ms presentation of a fixation cross, followed 
by a 500 ms blank screen display. Then a target frame was briefly pre
sented for 13.3 ms, followed, at various stimulus onset asynchronies 
(SOAs, measured from the onset of the target to the onset of the mask), 
by a 100 ms patterned mask. After the mask, the screen went blank until 
the observer made a response. The observers were asked to make two 
responses: first to report the foveal letter (T or L), and then to report the 
orientation of the target configuration (horizontal or vertical). Imme
diate auditory feedback was provided only for the incorrect foveal letter 
identification. There was a 250 ms inter-trial interval. The average ac
curacy of the foveal letter identification task is approximately 95 %, 
indicating effective foveal fixation.

The study employed the constant stimuli method, in which several 
predetermined stimulus levels were used and each level consisted of a 
fixed number of trials. The stimulus levels were stimulus onset asyn
chronies (SOAs, measured from the onset of the target to the onset of the 
mask), which were multiples of 13.3 ms frame duration, ranging from 3 
frames to 26 frames (40, 67, 80, 107, 120, 147, 160, 187, 200, 227, 240, 
267, 307, 347 ms). In the main experiment, the 14 SOA levels were 
randomized across all trials, with 18 trials per SOA level. Thus, a stan
dard block comprised a total of 252 trials. In the control experiment, the 
constant stimuli method was refined by reducing the 14 SOA levels to 6 
or 7 levels, with each level containing 42 or 36 trials, maintaining the 
total number of trials at 252.

Before the formal experiment, a pretraining block consisting of 10 
trials at a 347 ms SOA was administered repeatedly until observers 
reached a 90 % accuracy rate. Observers who completed ten pretraining 
blocks without attaining the required accuracy were excluded from the 
study. Those who 



reactivation group and half of the observers in the new no-reactivation 
group experienced 6 SOA levels (40, 67, 107, 160, 240, 347 ms), with 42 
trials per SOA level. The other half of observers in the new no- 
reactivation group underwent 7 SOA levels (40, 80, 120, 160, 200, 
267, 347 ms), with 36 trials per SOA level. Reactivation trials were set 
individually at one of the 6 ~ 7 SOAs that was closest to each observer’s 
pre-test threshold (See Table S1 for a specific value of each observer). 
Using the modified constant stimuli method, the new reactivation and 
no-reactivation groups only experienced Phase 1.

2.4. Data fitting and statistical analysis

To evaluate the impact of different data fitting methods on the re
sults, we employed two fitting methods to fit psychometric curves for 
threshold estimates.

The first fitting method is consistent with the approach described by 
Amar-Halpert et al. (2017). The threshold was calculated for each 
standard block (252 trials) using the Weibull fit for the psychometric 
curve, with slope β and finger error (mistyping) parameter 1 – p, yielding 
the function: 

P(t) = p{1 −
1
2

exp[−
( t

T

)β
]}+

1 − p
2

=
1
2
{1 + p[1 − exp[−

( t
T

)β
]]}

where P(t) is the measured probability of correct response; t represents 
the SOA levels; finger error parameter, which takes stimulus- 
independent errors (e.g., attention lapses, response-key confusion) into 
account, is a free parameter within a range (0 < 1 – p < 1); T is the 
estimated threshold for each curve, defined as the SOA for which 81.6 % 
of responses were correct when p = 1. Weibull fit was computed using a 
maximum likelihood method, assuming a binomial process (Wichmann 
& Hill, 2001).

The second method is using the psignifit4 software package (see http 
://bootstrap-software.org/psignifit/) to fit psychometric curves and 
estimate thresholds (Schütt et al., 2016). Here the psychometric function 
modeling was extended from the standard binomial to a beta-binomial 
model to enable accurate Bayesian estimation of psychometric func
tions even for overdispersed data. Psychometric curves for each observer 
were generated by fitting the data with a Weibull function. Using the 
chosen sigmoid family S(x;m,w), the psychometric function ψ is defined 
with two additional parameters λ and γ for the upper and lower 
asymptote, scaling the sigmoid function: 

ψ(x; m, w, λ, γ) = γ+(1 − λ − γ)S(x; m, w)

where threshold m is the stimulus level at which 81.6 % of responses 
were correct when λ = 0 (to maintain consistency with the first fitting 
method); w represents the width (difference between the stimulus levels 
for which the unscaled function reaches 0.05 and 0.95 respectively); λ 
represents the lapse rate (the difference between the upper asymptote 
and 1); γ represents the guess rate (the difference between the lower 
asymptote and 0). γ is fixed at 0.5 and the lapse rate λ is free.

For both fitting methods, to evaluate how well the psychometric 
curves capture the empirical data of each individual, we assess 
goodness-of-fit by calculating deviance which is recommended for 
binomial data (Wichmann & Hill, 2001): 

D = 2
∑K

i=1

{

niyilog(
yi

pi
)+ ni(1 − yi)log(

1 − yi

1 − pi
)

}

where K denotes the number of SOA levels, ni: the number of trials in 
SOA level i,yi: the observer’s response accuracy in SOA level i, pi: the 
response accuracy predicted by the fitted model.

For correct models, deviance for binomial data was asymptotically 
distributed as χ2

k , where K denoted the number of SOA levels and a χ2 

probability of < 0.05 is considered to indicate a poor fit of the model 
(Hietanen et al., 2022; Lasagna et al., 2020; Wichmann & Hill, 2001). In 

our data, both fitting methods indicated the same observer (R23) with 
poor goodness-of-fit on day 1 (see Figs. S1 for detailed information). As 
the statistical analyses produced similar results regardless of whether 
this observer was included or not in the analyses, we decided to keep this 
observer in the threshold analyses.

The learning effect was evaluated by the improvement in thresholds. 
Individual threshold improvement from the pre-test to the post-test was 
calculated as 100 %× (Thresholdpretest – Thresholdposttest)/Thresh
oldpretest and then averaged across observers to obtain the mean percent 
improvement (MPI). To evaluate the progress following Phase2 training, 
individual further threshold improvement from post-test to post-test2 
was calculated as 100 % × (Thresholdpost-test – Thresholdpost-test2)/ 
Thresholdpost-test, and individual total threshold improvement from pre- 
test to post-test2 was calculated as 100 % ×(Thresholdpretest – Thresh
oldposttest2)/Thresholdpretest.

All analyses were conducted using open-source JASP software 
version 0.17.2.1 (Wagenmakers et al., 2018). Improvements in SOA 
thresholds were compared against the value of 0 through a one-sample t- 
test. Within-group comparisons were performed using a paired samples 
t-test or one-way repeated measures analysis of variance (ANOVA). 
Comparisons between the two groups were conducted using both clas
sical and Bayesian independent samples t-tests.

3. Results

3.1. Main experiment_Phase1: Comparing learning effects of reactivation 
with no reactivation and full practice

In Phase 1 covering five days, we attempted to replicate the exper
iments of Amar-Halpert et al. (2017) with a larger number of observers. 
A total of 69 observers were randomly assigned into three groups, with 
23 observers in each group (Fig. 1b). To assess the impact of different 
fitting methods on the results, we estimated thresholds using two ap
proaches: the same fitting method as Amar-Halpert et al. (2017) (see 
Figs. S1-1, S2-1, S3-1 for individuals’ data fitting) and the psignifit4 
fitting method (see Figs. S1-2, S2-2, S3-2 for individuals’ data fitting). 
The results of the same fitting method were presented unless specified.

In the reactivation group, thresholds in the post-test (day 5) were 
significantly reduced compared to those in the pre-test (day 1) (Fig. 2a 
(i), mean_pretest = 127.3 ± 10.2 ms, mean_posttest = 85.8 ± 4.6 ms, t22 =

3.99, p < 0.001, Cohen’s d = 0.83; psignifit4: Fig. 2c(i), mean_pretest =

143.1 ± 14.4 ms, mean_posttest = 88.9 ± 4.8 ms, t22 = 3.92, p < 0.001, 
Cohen’s d = 0.82). The TDT performance improved significantly 
(Fig. 2b, MPI = 27.1 ± 4.4 %, t22 = 5.93, p < 0.001, Cohen’s d = 1.24; 
psignifit4: Fig. 2d, MPI = 28.0 ± 5.4 %, t22 = 5.16, p < 0.001, Cohen’s d 
= 1.08). The mean percent improvement of the reactivation group in 
Amar-Halpert et al. (2017) was also significant (MPI = 20.6 ± 5.5 %).

In the no-reactivation group, thresholds in the post-test (day 5) were 
significantly lower than those in the pre-test (day 1) (Fig. 2a(ii), 
mean_pretest = 117.9 ± 6.0 ms, mean_posttest = 90.2 ± 6.2 ms, t22 = 5.46, 
p < 0.001, Cohen’s d = 1.14; psignifit4: Fig. 2c(ii), mean_pretest = 128.4 
± 9.7 ms, mean_posttest = 92.6 ± 6.5 ms, t22 = 3.9, p < 0.001, Cohen’s d 
= 0.82), with a threshold decrease of 27.7 ± 5.1 ms (psignifit4: 35.8 ±
9.1 ms) from pre-test to post-test. The TDT performance improved 
significantly (Fig. 2b, MPI = 22.7 ± 3.8 %, t22 = 5.91, p < 0.001, 
Cohen’s d = 1.23; psignifit4: Fig. 2d, MPI = 23.9 ± 4.5 %, t22 = 5.32, p 
< 0.001, Cohen’s d = 1.11). However, the no-reactivation group (n = 7) 
in Amar-Halpert et al. (2017) showed little improvement, with a 
threshold decrease of 7.6 ± 3.3 ms from the pre-test to the post-test.

In the full-practice group, thresholds in the post-test (day 5) were 
significantly lower than those in the pre-test (day 1) (Fig. 2a(iii), 
mean_pretest = 125.0 ± 8.7 ms, mean_posttest = 88.0 ± 5.3 ms, t22 = 5.8, p 
< 0.001, Cohen’s d = 1.21; psignifit4: Fig. 2c(iii), mean_pretest = 135.4 ±
12.1 ms, mean_posttest = 89.4 ± 6.3 ms, t22 = 5.39, p < 0.001, Cohen’s d 
= 1.1). The TDT performance improved significantly (Fig. 2b, MPI =
27.3 ± 3.4 %, t22 = 8.04, p < 0.001, Cohen’s d = 1.68; psignifit4: Fig. 2d, 

J.-P. Zhu and J.-Y. Zhang                                                                                                                                                                                                                    Vision Research 227 (2025) 108543 

4 

http://bootstrap-software.org/psignifit/
http://bootstrap-software.org/psignifit/


MPI = 30.5 ± 3.6 %, t22 = 8.36, p < 0.001, Cohen’s d = 1.74). The 
learning progress from day 1 to day 2 in our full-practice group was also 
significant (MPI = 12.5 ± 4.2 %, t22 = 2.96, p = 0.007, Cohen’s d = 0.62; 
psignifit4: MPI = 12.4 ± 4.0 %, t22 = 3.09, p = 0.005, Cohen’s d = 0.65). 
The total learning effect of the full-practice group in Amar-Halpert et al. 
(2017) was also significant (MPI = 26.6 ± 5.9 %), but their day1-to- 
day2 improvement was insignificant (MPI = 2.9 ± 5.8 %).

A classical independent sample t-test revealed no significant differ
ence in learning improvements between the reactivation group and the 
no-reactivation group (t44 = 0.75, p = 0.46, Cohen’s d = 0.22; psignifit4: 
t44 = 0.58, p = 0.57, Cohen’s d = 0.17). A Bayesian independent-sample 
t-test also supports the null hypothesis, with a Bayes factor (BF10) of 0.37 
(psignifit4: BF10 = 0.34), representing the ratio of the likelihood of the 
observed data under the alternative hypothesis to the likelihood under 
the null hypothesis. A BF10 of 0.37 or 0.34 indicated anecdotal evidence 
in favor of the null hypothesis, according to the interpretation of the 
Bayes factor magnitude (Johnson et al., 2022; Wagenmakers et al., 
2018). The finding suggested that brief 



1.34, anecdotal evidence for the alternative hypothesis).
Similarly, in the no-reactivation group, thresholds in post-test2 were 

also significantly reduced compared to those in the post-test (Fig. 3c, 
mean_post-test = 89.0 ± 6.7 ms, mean_post-test2 = 71.3 ± 5.7 ms, t19 = 2.93, 
p = 0.009, Cohen’s d = 0.66), and the TDT performance improved 
significantly during Phase2 (Fig. 3d(i), MPI_Phase2 = 17.0 ± 5.6 %, t19 =

3.01, p = 0.007, Cohen’s d = 0.67; psignifit4: Fig. 3d(ii), MPI_Phase2 =

19.1 ± 5.7 %, t19 = 3.37, p = 0.003, Cohen’s d = 0.75). The full-practice 
improvements over the two phases were significantly greater than the 
Phase 1 improvements (Fig. 3d(i), MPI_Phase1 = 24.1 ± 4.0 %, MPI_total =

38.1 ± 4.3 %, t19 = 3.23, p = 0.004, Cohen’s d = 0.72; psignifit4: Fig. 3d 
(ii), MPI_Phase1 = 25.1 ± 4.8 %, MPI_total = 40.0 ± 4.8 %, t19 = 3.40, p =
0.003, Cohen’s d = 0.76). Notably, both classical and Bayesian inde
pendent samples t-tests showed that the no-reactivation group’s full- 
practice improvements were also greater than those of the 



(Fig. 4a(ii), mean_pretest = 122.9 ± 14.1 ms, mean_post-test = 85.9 ± 7.4 
ms, t7 = 4.16, p = 0.004, Cohen’s d = 1.47; psignifit4: Fig. 4c(ii), 
mean_pretest = 146.5 ± 24.1 ms, mean_post-test = 86.8 ± 8.0 ms, t7 = 3.24, 
p = 0.01, Cohen’s d = 1.15). The TDT performance also improved 
significantly (Fig. 4d, MPI = 28.4 ± 3.9 %, t7 = 7.20, p < 0.001, Cohen’s 
d = 2.54; psignifit4: Fig. 4d, MPI = 36.0 ± 5.3 %, t7 = 6.75, p < 0.001, 
Cohen’s d = 2.39).

Both classical and Bayesian independent samples t-tests indicated no 
significant difference in learning improvements between the two groups 
(t14 = 0.50, p = 0.63, Cohen’s d = 0.25; BF10 = 0.47, anecdotal evidence 
for the null hypothesis; psignifit4: t14 = 1.0, p = 0.33, Cohen’s d = 0.50; 
BF10 = 0.60, anecdotal evidence for the null hypothesis). Therefore, the 
results of the control experiment further indicated that reactivation did 
not yield additional gains in learning improvement compared to a no- 
reactivation condition, which is consistent with the results of the main 
experiment.

3.4. Finger error/Lapse rate and goodness-of-fit under two fitting methods

Finger errors or lapse rates reflected stimulus-independent errors (e. 
g., attention lapses, response-key confusion). Their values in each fitting 
method were reported in Fig. 5 (also see Supplementary Tables S2 ~ S6). 
One can readily see that finger error/lapse rate values showed a trend of 
decrease across sessions (along with a decrease in thresholds), suggest
ing increasingly reliable judgments as training progressed.

Statistical analyses of the finger errors/lapse rate values across days 
were conducted for each group. When using the same fitting method as 
Amar-Halpert et al. (2017), a one-way repeated measures ANOVA 
showed that finger error values showed a significant decrease from day 1 
(pre-test) to the last three days (reactivation group: Fig. 5a(i), ps < 0.02; 
full-practice group: Fig. 5a(iii), ps < 0.04) and a significant reduction 
from day 1 to the other four days (no-reactivation group: Fig. 5a(ii), ps <
0.001). Paired samples t-tests indicated that finger error values 
decreased significantly from day 1 to day 5 for both the new reactivation 
and new no-reactivation groups (Fig. 5a(iv), ps < 0.01).

Similarly, when using the psignifit4 fitting method, a one-way 
repeated measures ANOVA showed that the lapse rate values in the 
reactivation group showed no significant main effect of days (Fig. 5b(i), 
p = 0.06), but a paired samples t-test showed a significant decrease from 
day 1 to day 8 (p = 0.04). In the no-reactivation group, lapse rate values 
decreased significantly from day 1 to the other four days (Fig. 5b(ii), ps 
< 0.03). In the full-practice group, lapse rate values exhibited a signif
icant reduction from the first two days to the last day (Fig. 5b(iii), ps <
0.03). Additionally, the lapse rate values of the new reactivation and 
new no-reactivation groups showed no significant changes from day 1 to 
day 5 (Fig. 5b(iv), ps > 0.1).

To evaluate how well the psychometric curves capture the empirical 
data of each individual, we assess goodness-of-fit by calculating devi
ance (Wichmann & Hill, 2001), in which smaller deviance indicates 
better goodness-of-fit (Haynes et al., 2024; Su et al., 2024). In particular, 

Fig. 4. Perceptual learning of TDT from pre-test (day 1) to post-test (day 5) in the new reactivation and no-reactivation groups 



Fig. 5. Finger error/lapse rate across days in each group under two fitting methods. a & b. Finger error in the same fitting method as Amar-Halpert et al. (2017) (a) 
or lapse rate in the psignifit4 fitting method (b) changed as days in the reactivation group (i), the no-reactivation group (ii), the full-practice group (iii), the new 
reactivation group, and the new no-reactivation group (iv). Solid triangles and hollow circles represented mean and individual values, respectively. Error bars 
indicated ± 1 standard error of the mean. Note: 20 observers in the no-reactivation group finished the two phases of the operation.

Fig. 6. Goodness-of-fit (deviance values) across days for each group under two fitting methods. a & b. Deviance values changed as days in the reactivation group (i), 
the no-reactivation group (ii), the full-practice group (iii), the new reactivation group, and the new no-reactivation group (iv) under the same fitting method as Amar- 
Halpert et al. (2017) (a) and the psignifit4 fitting method (b). Solid triangles and hollow circles represented mean and individual values, respectively. Error bars 
indicated ± 1 standard error of the mean.
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both fitting methods indicated the same observer (R23) in the reac
tivation group with poor goodness-of-fit on day 1 in the chi-square test. 
After excluding this observer’s deviance values (which were retained in 
Fig. 6(i)), we performed a statistical analysis of the deviance values 
across days within each group. A one-way repeated measures ANOVA 
showed that, in the reactivation group, deviance values decreased 
significantly from day 1 (pre-test) to day 8 (post-test2) under the same 
fitting method (Fig. 6a(i), p = 0.02), but not under the psignifit4 fitting 
method (Fig. 6b(i), p = 0.10). In the no-reactivation group, the main 
effect of days is not significant (Fig. 6a(ii), p = 0.35; psignifit4: Fig. 6b 
(ii), p = 0.65). In the full-practice group, the main effect of days is also 
not significant (Fig. 6a(iii), p = 0.35; psignifit4: Fig. 6b(iii), p = 0.36). 
Additionally, paired samples t-tests indicated no significant change in 
deviance values from day 1 to day 5 for both the new reactivation and 
no-reactivation groups (Fig. 6a(iv), ps > 0.1; psignifit4: Fig. 6b(iv), ps >
0.2). These findings indicated that goodness-of-fit did not change across 
days in most groups, reflecting the stability of the fitting models.

Besides, both fitting methods indicated a significantly smaller devi
ance in the control experimental groups compared to the main experi
mental groups. Specifically, classical independent samples t-tests 
showed the new reactivation group had significantly lower deviance 
values compared to the reactivation group on day 1 (p = 0.002; 
psignifit4: p < 0.001) and day 5 (p = 0.002; psignifit4: p < 0.001). 
Similarly, the new no-reactivation group had significantly lower devi
ance values than the no-reactivation group on day 1 (p = 0.005; 
psignifit4: p = 0.004) and day 5 (p < 0.001; psignifit4: p < 0.001). These 
results suggested that our control experiment with the modified constant 
stimuli method produced better goodness of fit.

3.5. Performance on the fixation task

It is speculated that the large improvement of TDT in the no- 
reactivation group might be related to a strategy change in this group, 

where the observers shifted their focus of attention away from the fix
ation task towards the eccentric texture target discrimination task, 
thereby there might be a reduction in correctly reported fixation targets 
from the pre-test to the post-test. To answer this question, we analyzed 
the performance of the fixation task from the first day to the last day for 
each group. A one-way repeated measures ANOVA showed that the 
accuracies of the fixation task exhibited a significant increase from day 1 
(pre-test) to the other four days (reactivation group: Fig. 7a, ps < 0.001; 
no-reactivation group: Fig. 7b, ps < 0.01). In the full-practice group, the 
accuracies increased significantly from day 1 (pre-test) to the last three 
days (Fig. 7c, ps < 0.001), and the accuracies on the second day were 
significantly lower than those on the last day (



comparable. Our results suggested that the improvement in the TDT task 
associated with brief reactivation (5 trials per day over 3 days) did not 
surpass that of the no-reactivation group with no exposure to the TDT 
task over the same�؀



that the exact conditions of measurement play an important role in 
learning and transfer (Manning et al., 2018; Xiong et al., 2016; Zhang & 
Yu, 2018). Further evidence is needed to determine whether the current 
results are specific to the particular psychophysical method. Second, 
although effective foveal fixation was shown as the high accuracy in the 
central tumbling T/L task, the observers could shift (without being 
aware of it) their gaze towards the trained quadrant with the TDT target 
by 1 to 2 degrees to gain resolution of the texture elements and reduce 
crowding. Further exploration combining eye tracking could be used to 
determine any changes in fixation behavior across practice sessions and 
to test whether the tumbling T/L task is completed by extra-foveal 
vision. Third, although our findings of the null effect of reactivation 
resonate with previous research in visual and other domains (Chalkia 
et al., 2021; Chen & de Beeck, 2021; Luyten & Beckers, 2017), the 
positive findings of Amar-Halpert et al. (2017) are supported by reac
tivation effects in related paradigms like orientation detection (Bang 
et al., 2018). In the domain of motor learning, length of reactivation was 
identified as a crucial boundary condition determining whether human 
motor memories can undergo reconsolidation (de Beukelaar et al., 
2014). Similar boundary conditions have not been reported in visual 
perceptual learning, more replications and attempts are needed to 
confirm the existence of the reconsolidation phenomenon in the field of 
vision science.
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