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Results
Representational geometry models of syllable sequences in WM
Hierarchically organized syllable sequences were used to assess the 
neural representational geometry of sequence retained in WM (Fig. 1a). 
In Experiment 1, each trial presented 9 Chinese syllables at a constant 
rate of 4 Hz, which grouped into three trisyllabic words (different words 
in different trials). Accordingly, each syllable is associated with two 
ordinal ranks—a global rank (index of word in the sequence) and a local 
rank (index of syllable within a word). Human subjects were instructed 
to retain the sequence in WM. One of the nine syllables was presented 
during retention as the cueing syllable and subjects serially reported 
the global and local ranks of the cueing syllable during retrieval (bal-
anced order across trials) (Fig. 1c).

Here we focus on the neural representational geometry of 
sequence in WM during the retention period and formulate three 
hypotheses (Fig. 1b). The 1-D chain hypothesis postulates even spacing 
of the neural representation of each syllable along an axis, mirroring 
their presentation order. The 1-D cluster hypothesis extends the 1-D 
chain hypothesis by additionally considering the grouping of syllables 
into words and postulates that syllables within a word have shorter 
neural representational distances than those spanning word bounda-
ries. By contrast, the 2-D hierarchy hypothesis postulates separate 
neural axes for local and global ranks. The strongest form of the 2-D 
hierarchy hypothesis is that the two dimensions are orthogonal to 
each other. Under this condition, referred to as the 2-D orthogonal 
hypothesis, there is no interference between global-rank and local-rank 
representations.

We quantified the three hypotheses using a parametric represen-
tational geometry model with two free parameters, that is, the local–
global angle (LGA) and the local–global scale (LGS) (Fig. 1d, right). The 
LGA denotes the angle between the local and global dimensions. The 1-D 
chain and cluster hypotheses predict a 0° LGA, that is, local and global 
ranks occupy the same representational dimension. The 2-D hierarchy 
hypothesis predicts a non-zero LGA and the 2-D orthogonal hypothesis 
predicts a 90° LGA. The other parameter, LGS, denotes the ratio of 
representational distance between consecutive units along the local 
and global dimensions. The LGS is 1/3 according to the chain hypoth-
esis and should be lower than 1/3 according to the cluster hypothesis, 
which assumes compressed within-word distance. The 2-D hierarchy 
or orthogonal hypothesis does not constrain the LGS. However, an LGS 
lower than 1 indicates that global rank is better discriminated by the 
neural response than the local rank, and vice versa. Therefore, when the 
neural data were fitted using the representational geometry model, the 
fitted parameters could reveal whether the neural representation of the 
syllable sequence was consistent with 1-D chain (LGA = 0°, LGS = 1/3), 
1-D cluster (LGA = 0°, LGS < 1/3) or 2-D hierarchical hypothesis (LGA ≠ 0° 
and LGA = 90° for the 2-D orthogonal hypothesis).

We used an RSA to investigate which parameters of the represen-
tational geometry model best fit the neural data during WM retention. 
We focused on the neural response elicited by the cueing syllable 
and subsequent neutral impulse during WM retention, as both could 
reactivate ordinal rank information39. All trials were labelled according 
to the continuous ordinal rank (1–9) of the cueing syllable, regardless 
of the identity of the syllables. Trials in which the cueing syllable was 
associated with identical local and global ranks (that is, the 1st, 5th, 
9th syllable in the whole sequence) were excluded from the analysis, 
since these trials could not distinguish local and global ranks. The 
multivariate neural dissimilarity, that is, Mahalanobis distance between 
64-channel EEG responses or 204-sensor MEG gradiometer responses 
in each 50 ms time window (5 values for each sensor), between neural 
responses to syllables of different ranks was then calculated, yielding 
the neural representational dissimilarity matrix (neural RDM; Fig. 1d, 
upper left, purple matrix).

To fit the neural RDM, a number of model RDMs (Euclidean dis-
tance) were generated based on the representational geometry model 

that each item in a hierarchical sequence would be represented based 
on two indexes: a global index indicating its affiliated chunk order 
and a local index denoting its position within a chunk26–28. However, 
the neural implementation of this hierarchical reorganization in WM 
remains unknown. Answers to this question would shed light on the 
neural mechanism of WM operation and provide substantial insights 
into a wide range of fields given WM’s involvement in almost any cog-
nitive function.

To achieve abstract hierarchical organization, structure and con-
tent are proposed to be represented in a disentangled manner, known 
as factorization29,30. This view has been proposed in computational 
models for sequence memory31,32 and supported by recent empirical 
findings33–36. For instance, prefrontal cortex recordings in monkeys 
showed that when retaining a sequence of spatial locations in WM, each 
ordinal rank in the sequence occupies a subspace in multidimensional 
neural space, regardless of its content, that is, the memorized loca-
tion37. Furthermore, memorized content and sequence structure are 
reactivated by different triggering events during auditory WM reten-
tion, indicating their dissociated neural formats38,39. In light of these 
findings, we postulate that WM contains factorized representations of 
hierarchical structure and content items, and here we aimed at examin-
ing the neural representation of abstract hierarchical structure regard-
less of the items being attached. Lastly, unlike most studies focusing on 
the encoding period when items are presented40,41, our investigation 
centres on the maintenance period, which better elucidates the internal 
organizational principles of the WM system.

What types of neural representation could support the abstract 
hierarchical structure underlying sequence organization in WM? One 
straightforward possibility is a one-dimensional (1-D) clustered format, 
in which items within a chunk have compressed representational dis-
tance to each other, compared with items in different chunks (Fig. 1b, 
right middle). By contrast, however, here we propose that the hierarchi-
cal structure could also be implemented by two-dimensional (2-D) neu-
ral geometry whereby global and local ranks are separately encoded as 
separate dimensions spanning a 2-D space (Fig. 1b, right lower). In other 
words, a 1-D sequence embedded in hierarchical structures is neurally 
represented along two dimensions. Our hypotheses are motivated by 
previous findings. First, behavioural and modelling work propose that 
each item in a hierarchical sequence is reorganized via two indexes: 
a global index and a local index21–23,25–28. Second, orthogonal neural 
geometry has been observed in various fields to minimize inference 
between cognitive variables42–44. For instance, simple non-hierarchical 
sequences are encoded in near-orthogonal neural manifolds in WM, 
potentially reducing interference between ranks37. Therefore, dis-
sociating global and local ranks of hierarchical sequences along two 
neural axes would reduce their mutual interference.

To test the hypothesis, we performed two electroencephalog-
raphy (EEG) and one magnetoencephalography (MEG) experiments 
that asked subjects to retain a series of syllable sequences, which were 
hierarchically organized into words and multi-word sequences, and 
perform a rank recalling task. We examined the neural geometry of the 
syllable sequence in WM using an innovative parametrical representa-
tional similarity analysis (RSA) approach. We demonstrate a 2-D factor-
ized representation of the syllable sequence, with separate dimensions 
for the local rank (position of a syllable within a word) and the global 
rank (position of a word within a sequence). Critically, this 2-D neural 
geometry, originating from prefrontal and temporoparietal brain 
regions, is observed consistently in different stimulus settings and 
tasks, even when the task does not encourage hierarchical structures, 
and correlates with memory behaviour. Overall, these results support 
that the WM system can reorganize a complex linear sequence into a 2-D 
factorized neural representation to reveal the underlying hierarchical 
structure. Although only examined in linguistic contexts in the present 
study, the hierarchical organization finding would potentially reflect a 
general WM mechanism waiting to be tested in future studies.
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by sampling all possible pairing of LGA and LGS (Fig. 1d, upper right, 
black matrix). Using a regression analysis (linear mixed model), we 
evaluated which model RDM, that is, which parameter of the repre-
sentational geometry model, best fitted the neural RDM, with fixed 
effects indicating across-subject effects and random effects indicating 
individual effects. This regression analysis was conducted at each time 
point, resulting in time-resolved model fitting performance, quanti-
fied by negative log-likelihood, as a function of LGA and LGS (Fig. 1d, 
lower panel). The model parameter leading to the lowest negative 
log-likelihood was selected as the best model parameter (red asterisk) 
quantifying the neural representational geometry of syllable sequences 
in WM.

2-D hierarchical organization of syllable sequences in WM
Thirty-two human subjects participated in Experiment 1 with 64-channel 
EEG activities recorded. Subjects reported the global (96.59% ± 0.37%) 
and local (97.16% ± 0.40%) ranks with high accuracy. Figure 2a plots 
the time-resolved model fitting results (fixed effect in linear mixed 
model) throughout the retention period. Around 300 ms after the 
cueing syllable, the neural response was significantly explained by 
the parametric representational geometry model (300–420 ms, 
Pmax = 0.042, false discovery rate (FDR) corrected; peak, fixed effect 
beta = 0.00376, t(1150) = 5.342, P < 0.001, 95% CI, 0.00238–0.00513). 
Critically, the best model within the time range (dashed box) supports 
the 2-D hierarchy hypothesis (LGA = 109°, 95% CI, 78–161°; LGS = 0.9, 
95% CI, 0.57–1.48; fixed effect beta = 0.00268, t(1150) = 6.374, P < 0.001, 
95% CI, 0.00186–0.00351).

To further confirm these findings, Akaike Information Criterion 
(AIC) values for the best model (LGA = 109°, LGS = 0.9) were compared 
against those of the three hypotheses: 1-D chain (LGA = 0°, LGS = 1/3), 
1-D cluster (LGA = 0°, LGS = 1/4 as a representative value) and 2-D 
orthogonal (LGA = 90°, LGS = 1 as a representative value). Consist-
ently, the hierarchy hypothesis demonstrated superior performance, 
exhibiting the smallest ΔAIC compared with the AIC value of the best 
model (chain, ΔAIC = 103.641; cluster, ΔAIC = 90.516; orthogonal, 
ΔAIC = 5.741). Crucially, the model comparison results hold at the 
individual level as well (Supplementary Fig. 1a). By contrast, the neural 
response after the neutral impulse was not significantly explained by 
the parametric representational geometry model (Fig. 2a, P(3) = 0.064, 
FDR corrected; see Supplementary Fig. 2a for details).

In addition, we sought to directly decode global and local rank 
information from neural responses. Specifically, each participant’s neu-
ral RDM was regressed with two model RDMs, one based on the global 
rank and the other based on the local rank (Fig. 2b, upper). The cueing 
syllable indeed triggered neural encoding of both global and local ranks 
(permutation test; global rank, 300–500 ms, P < 0.001, corrected; local 
rank, 320–430 ms, P = 0.008, cluster-based permutation corrected), 
while the neutral impulse only triggered global (240–370 ms, P = 0.004, 
cluster-based permutation corrected) but not local rank (Pmin = 0.410, 
cluster-based permutation corrected) (Fig. 2b, lower). This might 

reflect the more excitable WM state of global rank compared with local 
rank, in line with the classic global precedence effect45,46.

In summary, these analyses demonstrated that a 1-D sylla-
ble sequence was retained in the WM according to the 2-D hierar-
chy hypothesis, with separate neural dimensions for the local and  
global ranks.

2-D hierarchy of syllable sequences with varied word length
Experiment 1 exclusively presented trisyllabic words. In Experiment 
2 (Fig. 3a), we varied the word length to introduce more variability 
and flexibility and test the generality of the 2-D hierarchy hypothesis. 
Specifically, the syllable sequence contained a random combination 
of three words containing two to four syllables (Fig. 3b). Moreover, 
instead of presenting syllables at a fixed rate, 0–40 ms temporal jit-
ter was added. Thirty-two subjects participated in Experiment 2 and 

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 9 | February 2025 | 360–375 364

Article https://doi.org/10.1038/s41562-024-02047-8

Neural representational geometry (retention)

Cueing syllable
Time (ms)

Be
ta

 (×
10

–3
 a

.u
.)

(li
ne

ar
 m

ix
ed

 m
od

el
)

Neutral impulse

0

Syllable

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 9 | February 2025 | 360–375 365

Article https://doi.org/10.1038/s41562-024-02047-8

not reactivate local rank information in Experiments 1 and 2. Thirty 
subjects participated in Experiment 3 and reported the continuous 
rank (96.04% ± 0.63%) with high accuracy.

Experiment 3 replicated the main findings of Experiments 1 and 
2, regardless of the critical task change (Fig. 4b). The cueing syllable 
elicited neural responses that could be well captured by the parametric 

representational geometry model but in a more sustained manner 
(240–920 ms, best model fixed effect beta = 0.00141, t(2428) = 6.919, 
P < 0.001, 95% CI, 0.00101–0.00181). The fitted parameter was consistent 
with the 2-D hierarchy hypothesis (LGA = 71°, 95% CI, 74–141°; LGS = 0.87, 
95% CI, 0.41–1.39), and the result was confirmed by model comparison 
(chain, ΔAIC = 25.729; cluster, ΔAIC = 25.488; orthogonal, ΔAIC = 8.107). 

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 9 | February 2025 | 360–375 366

Article https://doi.org/10.1038/s41562-024-02047-8

We further performed a multidimensional scaling (MDS) analysis on 
the neural RDM, which exhibits a clear hierarchical organization of the 
syllable sequence in WM (Fig. 4b, right dashed box, upper panel).

Moreover, we conducted a searchlight analysis (permutation test, 
corrected) in the sensor space and revealed one cluster within the left 
central and frontal channels that are engaged in the 2-D geometry 
representation of hierarchical structures (Fig. 4b, right dashed box, 
bottom-left panel). The same searchlight analysis conducted in the 
source space (see Methods for details) demonstrated the involvement 
of prefrontal cortex, temporoparietal areas and insula, with left hemi-
spheric lateralization (Fig. 4b, right dashed box, bottom-right panel). 
EEG recordings in Experiments 1 and 2 showed similar spatial patterns 
(Supplementary Fig. 4a). These findings suggest that instead of arising 
from dissociated regions encoding global and local ranks separately 
(Supplementary Fig. 3), the 2-D geometry originates from neural opera-
tions within same brain regions. Notably, the absence of 2-D geometry 
during encoding (Supplementary Fig. 5) supports a constructive WM 
process whereby a sequence of items is gradually reorganized into a 
2-D format from encoding to retention to guide subsequent behaviour.

Finally, consistent with Experiments 1 and 2, both global and 
local ranks were triggered by the cueing syllable (Fig. 4c, permuta-
tion test; global rank, 230–310 ms, P = 0.014, 620–690 ms, P = 0.023, 
810–920 ms, P = 0.003, cluster-based permutation corrected; local 
rank, 340–460 ms, P = 0.003, cluster-based permutation corrected). 
The searchlight analysis further confirmed that global and local ranks 
are processed in overlapping brain areas (Supplementary Fig. 3).

Overall, even in a continuous-report task that encourages the 
subject to store the 1-D sequence of syllables as it is, the brain still 
automatically reorganizes the 1-D syllable sequence into a 2-D neural 
representational geometry in WM.

2-D hierarchical organization in WM behaviour
On top of MEG evidence, behavioural responses during the 
continuous-rank report task also supported the hierarchy hypothesis. 
First, the reaction time (RT) calculated for each of the 9 cueing posi-
tions showed that primacy and recency effects were observed both at 
the local and the global scales, that is, shorter reaction time for the first 
and last word (Global 1 versus Global 2, t(29) = −4.284, P < 0.001, Cohen’s 
d = 0.800, 95% CI, −∞ to −0.095; Global 3 versus Global 2, t(29) = −2.297, 
P = 0.020, Cohen’s d = 0.419, 95% CI, −∞ to −0.011) and shorter reaction 
time for the first and last syllable within each word (Local 1 versus Local 
2, t(29) = −3.707, P = 0.001, Cohen’s d = 0.677, 95% CI, −∞ to −0.044; 
Local 3 versus Local 2, t(29) = −4.078, P < 0.001, Cohen’s d = 0.745, 95% 
CI, −∞ to −0.058) (Fig. 4e). Two-way repeated ANOVA analyses sup-
ported the contribution of both global and local ranks to RTs (global 
rank, F(1.364,39.569) = 15.050, P < 0.001, partial η2 = 0.343; local rank, 
F(1.358,39.390) = 13.098, P < 0.001, partial η2 = 0.311; interactions, 
F(3.083,89.405) = 15.758, P < 0.001, partial η2 = 0.352).

The reported error profiles also support the 2-D hierarchy hypoth-
esis. As illustrated in Fig. 4f (left), the 1-D chain and 2-D hierarchy 
hypotheses predict different error patterns (EPs), which were sepa-
rately referred to as the continuous error (CE) and the hierarchical error 
(HE). Specifically, if the sequence is retained as a 1-D chain as the task 
required, a syllable tends to be confused with its neighbouring syllables 
in the sequence, for example, the 4th syllable would be reported as the 
3rd or 5th syllable (Fig. 4f, left, CE, blue arrow). By contrast, if syllables 
are organized based on a 2-D hierarchical representation, a syllable can 
also be confused with its neighbours along the global rank axis, that is, 
the 4th syllable confused with the 1st or 7th syllable (Fig. 4f, left, HE, 
orange arrow). The observed errors showed a pattern consistent with 
HE profile (Fig. 4f, middle-left, EP). To further quantify the results, we 
built two RDMs based on CE and HE hypotheses (Fig. 4f, middle-right, 
error RDM), and regressed the overall behavioural EP by CE and HE 
RDMs (Fig. 4f, right). The results support the greater contribution of 
hierarchical structure to behaviour (bootstrapping test; βCE = 1.025, 
95% CI, 0.440–1.769; βHE = 3.523, 95% CI, 2.507–4.998). Together with 
similar behavioural results in Experiments 1 and 2 (Supplementary 
Fig. 4c,d), the findings provide converging behavioural evidence sup-
porting hierarchical organization in WM.

Neural representational geometry predicts WM behaviour
Finally, we examined whether the neural representational geom-
etry was related to WM behaviour in individual subjects. Since the 
continuous-report task in Experiment 3 motivated subjects to maintain 
a 1-D chain neural representation, a 2-D hierarchical neural geometry, 
although observed at the population level, could in principle adversely 
affect the continuous-report behavioural performance. We thereby 
hypothesized that individuals showing 1-D chain neural geometry com-
mensurate with task requirements demonstrated higher accuracy 
on the continuous-report task than those showing 2-D hierarchical 
neural geometry.

To test this hypothesis, we regressed individual neural RDM with 
the model RDMs derived from the 1-D chain and 2-D orthogonal hypoth-
eses (Fig. 4d, left panel), based on which we computed a hierarchical 
representational strength (HRS) index for each participant, defined as 
the difference between the regression beta values of the 2-D orthogonal 
and 1-D chain hypotheses. Consistent with our hypothesis, subjects 
with higher HRS demonstrated lower report accuracy (94.64% ± 4.22%) 
than subjects with lower HRS values (97.45% ± 1.73%) on the continuous 
rank report task (Fig. 4d, right panel; independent t-test; t(27) = −2.368, 
P = 0.012, Cohen’s d = 0.874, 95% CI, −∞ to −0.55%). Interestingly, the 
neural-behavioural correlation in Experiments 1 and 2 showed an oppo-
site pattern (Supplementary Fig. 4b). Specifically, participants with 
stronger hierarchical neural representations exhibited significantly 
higher reporting accuracy. The different neural-behavioural relation-
ship is due to different tasks, such that global and local rank report in 

Fig. 4 | Experiment 3. All results here are based on MEG recordings from 
N = 30 subjects. a, Experimental procedure (identical to Experiment 1, but with 
the task of reporting the continuous rank, 1–9, of the cueing syllable). b, Same 
as Fig. 2a, with the addition of MDS results of the averaged neural RDM (upper 
panel, right dashed inset) and sensor-/source-level searchlight results for the 
2-D orthogonal geometry model (lower panel, right dashed inset). Statistical 
significance was assessed using non-parametric sign-permutation tests (one-
sided) for each sensor and brain parcel. Sensor-level results were corrected 
with cluster-based permutation (P < 0.05, 10,000 permutations, significant 
clusters marked by asterisks). Source-level results were FDR corrected (P < 0.01, 
significant parcels shown in colour). Source-level searchlight analysis includes 
29 subjects (one lacked anatomical MRI data). c, Same as Fig. 2b. d, Behavioural 
correlates of neural representational geometry. Left: individual-level regression 
coefficients of neural RDMs with the three hypotheses (1-D chain, 1-D cluster 
and 2-D orthogonal). Subjects are grouped based on their HRS index. Right: 
continuous rank report accuracy of HigherHRS and LowerHRS groups (independent 

t-test, one-sided). One outlier (beyond 3 s.d. from the mean) was excluded 
from the statistics (NHigherHRS = 14, NLowerHRS = 15). e, Hierarchical structure in the 
RT pattern. Left: RT by cueing syllable’s continuous rank (two-way repeated 
measures ANOVA). Right: RT by global/local rank, marginalizing local/global 
rank (paired t-tests, one-sided, Bonferroni corrected). f, Hierarchical structure 
in error pattern. Left: illustration of CE based on the 1-D chain hypothesis (blue 
arrows) and HE based on the 2-D hierarchy hypothesis (orange arrows). Middle: 
observed behavioural error patterns (pooled across 30 subjects) for each of 
the 9 continuous ranks in 3 × 3 matrices, combined into a 9 × 9 matrix. Right: 
regression of observed behavioural error patterns with RDMCE and RDMHE (red 
line, regression coefficients; error bars, 95% bias-corrected and accelerated 
confidence intervals from 5,000 bootstraps; dots denote bootstrapped 
samples). Boxes (d and e) represent the interquartile range (IQR) with the median 
shown as a horizontal line. Whiskers extend to 1.5 times the IQR, and outliers are 
marked by crosses. Each dot represents one subject.
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Experiments 1 and 2 encouraged 2-D structure, while continuous report 
in Experiment 3 does not, as the 2-D structure needs to be transformed 
to 1-D continuous sequence.

Taken together, subjects automatically reorganize syllable 
sequences into a 2-D hierarchical neural representational geometry 
in WM even when the reorganization is unfavourable to the task. The 
findings also further substantiate the strong link between neural rep-
resentational geometry in WM and memory behaviour.

Discussion
It has long been proposed that WM organize information into hierar-
chically embedded chunks, yet the underlying neural implementa-
tion remains unknown. In three human EEG/MEG experiments, we 
provide converging evidence that hierarchically organized structures 
underlying a 1-D sensory sequence are represented by 2-D neural rep-
resentational geometry in WM, whereby each item in the sequence 
is reorganized along two dimensions, separately corresponding to 
chunk order and the order of an item within a chunk. The 2-D geometry, 
arising from prefrontal and temporoparietal regions, is automatically 
constructed regardless of task demands and could predict behaviour.

Hierarchical organization is found in a wide range of human behav-
iours, including language, music, knowledge, motor control, memory, 
decision-making and planning12,13,47–49. Humans indeed excel at tracking 
the hierarchical structure embedded in stimuli50,51, inferring hierarchi-
cally generative rules52 and making hierarchically structured plans14,19. 
This hierarchy-based organizational principle offers a compelling solu-
tion to balance capacity limits and flexible operations in WM, such as 
compressing information storage, decreasing interference between 
levels and boosting retrieval efficiency by top-down signals18,19,53,54. 
Here, even in a task that encourages a 1-D representation by report-
ing continuous 1-D rank, behavioural measurements (that is, RT and 
reported error profile) exhibit hierarchical structures, consistent with 
previous findings21–23,25,55–57, and global/local ranks could be separately 
decoded from neural activities. These findings add substantial evi-
dence for the intrinsic hierarchical nature of WM.

Most importantly, we demonstrate that this hierarchical reorgani-
zation in WM is neurally implemented through 2-D geometry rather 
than 1-D clustered geometry, although both operations could achieve 
WM chunking. Previous modelling works propose that items in a hier-
archical sequence are associated with a global and a local index26–28, 
advocating a 2-D representation in mental space. Our findings sup-
port this view and provide novel insight into its neural implementa-
tions. Notably, hierarchically organized sequences do not necessarily 
correspond to 2-D geometry in neural space. Brain activities could 
track information at multiple hierarchical levels50,58, yet this could 
not reveal how those levels are related to each other. For example, one 
study demonstrated neural encoding of local and global ranks during 
motor preparation, highlighting their relevance to WM capacity and 
showing that within-chunk ranks are aligned across chunks59. Our 
study extends these findings by quantitatively and directly revealing 
the underlying neural geometry that links items within a hierarchical 
sequence across various settings. Specifically, the 2-D neural geometry 
constitutes an abstract, unified neural space that can reveal the internal 
chunk organization of items, regardless of the content. This neural 
geometry supports the representation of chunks of varying lengths 
(that is, Experiment 2) and in different tasks (as compared between 
Experiments 1 and 3). The close association with WM behaviour further 
confirms its central role in structure-based WM operations. Notably, 
the 2-D factorized encoding strategy is proposed to minimize infer-
ence between representational dimensions
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their neural geometry in WM. In other words, by sampling neural rep-
resentations of various items via cueing syllables as probes in different 
trials, we could illustrate how items in the sequence are stored in WM. 
Finally, the neural profile could not be attributed to action planning, 
for example, to-be-reported global and local ranks. Experiment 3 does 
not require global and local reports but both show neural representa-
tions. Moreover, typical action-related neural signals precede motor 
execution84,85, while here the neural responses emerge immediately after 
the cueing syllable and do not persist into action execution.

Taken together, we leverage the innate hierarchical structure of 
linguistic materials and demonstrate 2-D geometrical representa-
tions of complex sequences in WM and their impact on behaviour. 
The findings, in a broad sense, illustrate how the brain automatically 
reorganizes incoming information into an appropriate structure that 
facilitates information storage and retrieval, and would provide poten-
tial insights into a wide range of domains given WM’s involvement in 
almost any cognitive function.

Methods
Ethics
This research complied with all relevant ethical regulations and received 
approval from the Departmental Ethical Committee of Peking Univer-
sity. All subjects gave written informed consent before taking part 
in the experiments. Each subject received compensation for his/her 
participation in the form of either 60 RMB per hour or course credits.

Subjects
Thirty-two (18 females and 14 males, mean age 20.8, range 18–27 years), 
32 (17 females and 15 males, mean age 21.3, range 18–27 years) and 30 (11 
females and 19 males, mean age 21.2, range 18–27 years) native listen-
ers of Mandarin Chinese with no history of neurological or psychiatric 
disorders were recruited in Experiments 1, 2 and 3, respectively. No 
subject participated in more than one experiment. All subjects had 
normal or corrected-to-normal vision and none of them had any known 
auditory disorders.

Apparatus of EEG experiments (Experiments 1 and 2)
The whole experiment was performed via Psychophysics Toolbox-3 
(ref. 86) for MATLAB (MathWorks) using custom scripts. Visual stimuli 
were presented on a 32 inch Display++ LCD screen, operating at a resolu-
tion of 1,920 × 1,080 pixels and a refresh rate of 120 Hz. Auditory stimuli 
(that is, syllable sequences and cueing syllables) were generated in 
advance using custom MATLAB codes. During the experiment, these 
auditory stimuli were delivered to the subjects via a Sennheiser CX300S 
earphone that was connected to an RME Babyface Pro external sound 
card. Subjects’ head positions were secured using a chin rest, which 
was positioned 75 cm away from the screen. Subjects’ responses for 
the tasks were collected using a standard QWERTY keyboard.

Apparatus of the MEG experiment (Experiment 3)
The whole experiment was also controlled via Psychophysics Toolbox-3 
(ref. 86) for MATLAB (MathWorks) using custom scripts. Visual stimuli 
were projected onto a 32 inch rear projection screen, positioned 75 cm 
away from the subjects, using a projector. The projector operated at 
a resolution of 1,920 × 1,080 pixels and a refresh rate of 60 Hz. The 
pre-generated auditory stimuli (that is, syllable sequences and cueing 
syllables) were delivered to the subjects via an air-tube earphone that 
was connected to an RME Babyface Pro external sound card. Subjects’ 
responses were collected using a response pad.

Auditory stimuli
In the current research, auditory stimuli were syllable sequences and 
cueing syllables. All stimuli were presented in Mandarin Chinese, where 
each character corresponds to a single syllable and combinations of 
characters (that is, syllables) form words conveying specific meanings. 

In both Experiments 1 and 3, syllable sequences were formed by con-
catenating three trisyllabic words. In Experiment 2, syllable sequences 
were constructed by randomly selecting and concatenating three 
words from a pool comprising disyllabic words, trisyllabic words and 
quadrisyllabic idioms. We ensured that each syllable sequence did not 
contain any syllables with the same pronunciation. It is notable that 
both the fixed word-rate sequences used in Experiments 1 and 3 and 
the varied word-rate sequences used in Experiment 2 are naturally and 
effortlessly chunked into meaningful units for native Chinese speak-
ers. For example, a sequence like ‘in-cre-di-ble-buil-ding-lu-lla-by’ 
(4-2-3 sequence) in English would be easily organized into three words 
by an English speaker. Similarly, there is no ambiguity in the chunk-
ing of these sequences for Chinese subjects. Although the syllable 
sequences could be structured into three multisyllabic words, each 
of the constituent syllables was independently synthesized using the 
Neospeech synthesizer (the male voice, Liang). The synthesized sylla-
bles had a duration range of 168–397 ms (mean 250 ms) in Experiment 
1, 168–400 ms (mean 251 ms) in Experiment 2 and 155–401 ms (mean 
250 ms) in Experiment 3. To achieve uniformity, all syllables in Experi-
ments 1 and 3 were adjusted to a consistent length of 250 ms, either by 
truncating the syllable or adding silence at the end. Those syllables in 
Experiment 2 were adjusted to 230 ms. The final 25 ms of each syllable 
were smoothed by a cosine window. Upon the synthesis of constituent 
syllables, they were successively concatenated without any temporal 
gaps, forming the syllable sequences for both Experiments 1 and 3. 
For the syllable sequences in Experiment 2, a random temporal jitter 
ranging from 0 ms to 40 ms was introduced between two successive 
syllables. At present, all syllable sequences have been generated. Given 
the acoustic independence of constituted syllables, the hierarchical 
structure of syllable sequences (syllable-word-sequence) could only be 
extracted through semantic knowledge (Fig. 1a), not prosodic cues. In 
this set-up, each syllable within the syllable sequence carries two pieces 
of structural information: local rank information (the ordinal rank of 
the syllable within its multisyllabic word) and global rank information 
(the ordinal rank of the multisyllabic word within the entire sequence). 
All texts and sound files of the syllable sequence and cueing syllables 
are available here (https://osf.io/drzuy/#).

Experimental procedure (Experiment 1)
The initiation of a trial was signalled by the presentation of a black cross 
(0.9° in visual angle), positioned centrally against a grey background 
(RGB = (128,128,128)). This cross remained in place throughout the 
entirety of a trial, with the exception of during the neutral impulse 
presentation and the report screen (Fig. 1c). Subjects were instructed 
to maintain their gaze on the central cross and minimize eye blinking 
throughout each trial. During the encoding phase of the WM task, sub-
jects were presented with pre-generated syllable sequences via audi-
tory delivery. The task required subjects to memorize these sequences 
in the order they were presented. During the maintenance phase, 
two types of trigger events, an auditory cueing syllable, which was 
one of the syllables delivered during the encoding phase, and a visual 
neutral impulse (the visual angle is 18°), were used to probe the neural 
representation of hierarchical structure. The rationale is that each 
syllable is associated with specific hierarchical structure information 
during the encoding phase, based on the current syllable sequence. As 
a result, when a syllable is presented during the maintenance period, 
its associated hierarchical structure information could be reactivated. 
Meanwhile, the visual neutral impulse is designed to perturb the WM 
network, thereby reactivating the maintained information. These two 
trigger events were proved efficient in probing sequential temporal 
structures (1st, 2nd and 3rd) in our previous research39. The subjects’ 
task was to report both the global and local ranks of the cueing syllable. 
The order in which these ranks were reported was randomized for each 
trial and was shown on the report screen. For each report, subjects were 
instructed to use their index, middle or ring fingers of their right hand 
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to press the ‘j’, ‘k’ or ‘l’ keys, respectively. Notably, to prevent motor 
response preparation during the maintenance phase, the correspond-
ence between the ranks (1st, 2nd and 3rd) and the response keys (‘j’, ‘k’ 
or ‘l’) was randomly assigned for each trial, as indicated on the report 
screen. In Experiment 1, we delivered only those syllables as cueing 
syllables that corresponded to inconsistent global and local ranks 
(that is, global 1 and local 2 (G1L2), G1L3, G2L1, G2L3, G3L1 and G3L2). 
This was done to avoid scenarios where the global and local ranks of 
a cueing syllable are identical. In such cases, subjects could complete 
the experimental task by representing a single rank information, with-
out specifying whether it pertains to a global or local rank. This could 
potentially introduce ambiguity in discerning whether the neural 
representation is related to global or local hierarchical information. 
Experiment 1 consisted of a total of 432 trials. To mitigate fatigue, a 
mandatory break of at least 1 minute was instituted after every 30 trials.

Experimental procedure (Experiment 2)
Experiment 2 closely mirrors the design of Experiment 1, with the key 
distinction being that the syllable sequences in Experiment 2 exhibit 
irregular hierarchical structures (Fig. 3b; for details, see ‘Auditory 
stimuli’). Furthermore, certain timing parameters were modified to 
manage the overall duration of the experiment (Fig. 3a). The response 
keys were also expanded to four keys, with the ‘j’, ‘k’, ‘l’ and ‘;’ keys cor-
responding to the index, middle, ring and little fingers of the right hand, 
respectively. Experiment 2 comprised a total of 486 trials.

Experimental procedure (Experiment 3)
The hierarchical structure of the syllable sequences in Experiment 3 
is identical to that of Experiment 1, both of which are constructed by 
concatenating three trisyllabic words. However, the specific syllable 
sequences used in Experiment 3 were newly generated. Most impor-
tantly, the behavioural task was to report the continuous rank of the 
cueing syllable within the syllable sequence, which ranged from 1 to 9, 
at the end of each trial (Fig. 4a). Contrary to tasks that involve report-
ing the global and local ranks of the cueing syllable in Experiments 1 
and 2, the task in Experiment 3 does not encourage any hierarchical 
structuring of the syllable sequence explicitly. Therefore, Experiment 
3 could eliminate the possibility that findings from Experiments 1 and 
2 are solely confined to the hierarchical rank report task. In addition, 
Experiment 3 used syllables corresponding to all continuous ranks 
(1–9) as the cueing syllable. Meanwhile, we chose to retain only cueing 
syllable as the trigger event in Experiment 3 given its proven efficiency 
in reactivating hierarchical structures in both Experiments 1 and 2. 
Experiment 3 comprised a total of 459 trials.

Experimental materials (Experiment 1)
In Experiment 1, a total of 81 unique 3-syllable words were used in Exper-
iment 1, with each word presenting an average of 16 times throughout 
the experiment (s.e. = 0.28). All 81 words were used as targets (where 
the cued syllable belonged), with each being cued an average of 5.3 
times (s.e. = 0.079). Across all 432 trials, the cued syllable consisted of 
241 different pronunciations, with each unique syllable being cued an 
average of 1.79 times (s.e. = 0.026).

Experimental materials (Experiment 2)
In Experiment 2, 248 different words were used, each appearing an 
average of 5.88 times throughout the experiment (s.e. = 0.066). Of 
these, 237 words served as targets, with each being cued an average of 
2.051 times (s.e. = 0.073). Across 486 trials, the cued syllable included 
338 different pronunciations, with each unique syllable being cued an 
average of 1.44 times (s.e. = 0.047).

Experimental materials (Experiment 3)
Experiment 3 used 301 different words, each appearing an aver-
age of 4.57 times throughout the experiment (s.e. = 0.029). All 301 

words served as targets, with each being cued an average of 1.52 times 
(s.e. = 0.033). Across 459 trials, the cued syllable comprised 413 differ-
ent pronunciations, with each unique syllable being cued an average 
of 1.11 times (s.e. = 0.016).

EEG acquisition and pre-processing (Experiment 1)
The EEG signals were acquired using a 64-channel EasyCap (Brain Prod-
ucts). The data were recorded using two BrainAmp amplifiers (Brain 
Products) and the BrainVision Recorder software (Brain Products) at 
a frequency of 500 Hz. Throughout the entire EEG recording process, 
the impedance of all electrodes was maintained below 10 kΩ. The 
recorded EEG data were subsequently pre-processed offline utilizing 
FieldTrip87 in MATLAB 2022a. The data were segmented into epochs 
extending from 200 ms before the onset of the syllable sequence to 
500 ms following the onset of the report screen. These epochs were 
then baseline-corrected using the mean activity from 50 ms to 100 ms 
before the onset of the syllable sequence as the baseline for subtrac-
tion. Following this, the data were re-referenced to the average value 
across all channels, downsampled to a frequency of 100 Hz and sub-
jected to a band-pass filter within the 1–30 Hz range. Independent 
component analysis using FastICA algorithm was conducted to elimi-
nate components associated with eye movement and other artefacts, 
such as bad channels and heartbeat. The remaining components were 
back-projected into the EEG channel space for subsequent analysis.

EEG acquisition and pre-processing (Experiment 2)
The acquisition of EEG data in Experiment 2 was carried out in the same 
manner as in Experiment 1. The pre-processing procedure was also 
largely identical, with the exception that epochs were extracted from 
2500 ms before the onset of the cueing syllable to 700 ms following 
the offset of the neutral impulse in Experiment 2.

MEG acquisition and pre-processing (Experiment 3)
Neuromagnetic data were acquired using a whole-head MEG system 
with 204 planar gradiometers and 102 magnetometers (Elekta Neu-
romag system) in a magnetically shielded room. The MEG experiment 
was divided into ten blocks, each followed by a brief break. Before the 
commencement of each block, the position of the subject’s head was 
estimated using index coils placed at four points on the head. This posi-
tion was then compared with the initial position recorded at the start 
of the experiment to ensure that any head movement did not exceed 
4 mm throughout the experiment. Magnetic field strength was sampled 
at a frequency of 1,000 Hz. The recorded MEG data were subsequently 
pre-processed offline utilizing MNE-Python tools88. Initially, the data 
underwent de-noising and motion correction using the Maxfilter Sig-
nal Space Separation method. Subsequently, the data were band-pass 
filtered to a range of 1–40 Hz and downsampled to a frequency of 
100 Hz. Epochs were then extracted, specifically from 600 ms before 
the onset of the syllable sequence to 600 ms following the onset of the 
report screen. Finally, ICA using FastICA algorithm was conducted to 
eliminate components associated with eye movement and heartbeat.

Source reconstruction (MEG)
Among the 30 participants who completed the MEG data recording, 
29 underwent individual anatomical imaging using a 3 T GE Discovery 
MR750 MRI scanner (GE Healthcare). Only these 29 participants with 
individual anatomical images were included in the source reconstruc-
tion analysis. Each participant’s MEG data were co-registered with 
their structural MRI, and boundary element model (BEM) models were 
generated using the FreeSurfer watershed algorithm. The forward 
model was computed using a surface-based source space with 4,096 
vn, 
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time window of −800 ms to −200 ms relative to cueing syllable onset, 
and the data interval was defined as −90 ms to 1,000 ms.

Source reconstruction (EEG)
The main processes are the same as MEG source reconstruction. How-
ever, as no anatomical images were collected in the EEG experiments, 
we used the standard template MRI subject ‘fsaverage’ provided by 
MNE-Python instead.

RSA based on the parametric representational geometry 
model
Neural RDM. Each entry in the neural RDM represents the Mahalano-
bis distance between neural representations of two hierarchical ranks, 
which were reactivated by cueing syllable (Fig. 1d, upper left). In the 
computation of neural RDM, each trial was labelled based on the 
hierarchical rank associated with the cueing syllable. For instance, 
consider a three trisyllabic word sequence to be memorized as ‘Zhi-
NanZhenYaoLanQuTuJiDui’, where the cueing syllable is ‘Zhen’. Given 
that the ‘Zhen’ is the third syllable of the first word, this trial would 
be labelled as global 1 local 3, abbreviated as G1L3. Furthermore, a 
subsampling of trials was performed. Specifically, for each cueing 
syllable with a unique pronunciation, we randomly selected trials 
corresponding to its appearance at one specific position in one sub-
sampling. This procedure ensured that within all sampled trials, no 
cueing syllables shared the same pronunciation. Consequently, the 
computed neural dissimilarity across different hierarchical ranks was 
not influenced by the recurrence of the same cueing syllable pronun-
ciation across various ranks, which further ensured that the results 
reflected a genuine representation of the hierarchical structure, dis-
sociable from the content. Meanwhile, the trial subsampling process 
ensured an approximately equal number of trials for each hierarchical 
rank to preserve comparability across conditions. For subjects with 
the fewest trials, each hierarchical rank included 28 trials. Finally, the 
calculation of the neural RDM incorporated both spatial and temporal 
features89. Specifically, at each time point, signals from all sensors 
(64 EEG channels for Experiments 1 and 2, and 204 gradiometers for 
Experiment 3) within a forward 50 ms time window (5 values, one 
for each of the five 10 ms windows) were included as spatiotemporal 
features. This resulted in 320 features (that is, 64 × 5) for the EEG 
experiments and 1,020 features (that is, 204 × 5) for the MEG experi-
ment at each time point.

We utilized an eight-fold cross-validated approach to compute 
the neural RDM38,90. The previously subsampled trials were partitioned 
into eight folds, ensuring an approximately equal distribution of trials 
for each hierarchical rank within each fold. Subsequently, one fold was 
taken as testing dataset, while the remaining seven folds constituted 
training dataset. The condition-specific spatiotemporal neural pattern 
was computed by averaging the trials that corresponded to identi-
cal hierarchical ranks within the training dataset. Subsequently, the 
Mahalanobis distance was computed between the spatiotemporal 
neural activity of each individual trial in the testing dataset and each 
condition-specific spatiotemporal neural pattern that was derived from 
the training dataset. Finally, the original Mahalanobis distances were 
adjusted by subtracting the mean distance between each testing trial 
and all training conditions for each testing trial (that is, mean-centred). 
The above procedure was iteratively performed until each of the eight 
folds had served as testing dataset. Upon completion, we obtained 
a neural RDM of dimensions corresponding to the number of trials 
by the number of conditions (that is, hierarchical ranks). Finally, dis-
tances of trials corresponding to identical hierarchical ranks were 
averaged, resulting in a condition-by-condition neural RDM. The 
entire procedure, from trial subsampling to the generation of the 
final condition-by-condition neural RDM, was performed 300 times. 
The resulting 300 neural RDMs were then averaged to yield the final 
neural RDM at each time point.

Parametric representational geometry model. It is proposed that the 
representational geometry for abstract hierarchical structure can be 
projected onto a 2-D plane (Fig. 1d, upper right). This plane is defined 
by two axes, each representing a distinct level of rank information: one 
corresponds to high-level global ranks, and the other to low-level local 
ranks. The specific geometry can be quantified using two parameters: 
LGA and LGS. The LGA represents the angle between representational 
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are suitable inputs for the classical MDS method. Finally, by applying 
classical MDS, we projected the averaged symmetric RDM across all 
subjects and significant time points into a three-dimensional space, 
ultimately deriving the final neural geometry.

Model-based neural decoding analyses
To directly investigate the reactivation patterns of both global and 
local rank information for cueing syllables during the maintenance 
period, we implemented model-based neural decoding analyses 
(Fig. 2b, Fig. 3c and Fig. 4c, left). Specifically, for each subject individu-
ally, the time-resolved neural RDM was regressed using two predictors: 
the global rank RDM and the local rank RDM. Each regression coef-
ficient’s (β) time courses were smoothed with a Gaussian-weighted 
window (window length = 40 ms). A regression coefficient (β) sig-
nificantly exceeding zero signifies that corresponding information 
is represented in the neural activities. We used a non-parametric 
sign-permutation test91 to conduct statistical analyses on the regres-
sion coefficients. Specifically, the sign of regression coefficients for 
each subject at each time point was subjected to 100,000 random 
flips, which process allowed the generation of null distribution of the 
population mean β. The P value of the observed population mean β 
was then estimated from this null distribution (one-sided). To adjust 
for multiple comparisons over time, a cluster-based permutation test 
was conducted, with a cluster-forming threshold of P < 0.05. We per-
formed cluster-based permutation tests within specific time windows 
following each triggering event: from −40 ms to 1,000 ms after the 
cueing syllable (Experiments 1–3) and from −40 ms to 900 ms after 
the neutral impulse (Experiments 1 and 2). These window lengths 
were chosen based on previous studies indicating that various types 
of WM representations reactivated by a triggering event consistently 
last less than 1 second (refs. 39,76,77). However, the window for the 
neutral impulse was shortened to 900 ms, the maximum duration 
possible, because the report screen appeared 900 ms after the neutral 
impulse in both Experiments 1 and 2.

Searchlight analyses (sensor level)
A searchlight analysis was performed to identify MEG sensors (gradi-
ometers) involved in representing the 2-D orthogonal geometry, global 
rank and local rank. For each sensor, we computed a neural multivariate 
RDM incorporating neural activities from this sensor and its neigh-
bours (averaging 8.33 neighbours, range 4–11) within a 50 ms time 
window as features at each time point. Next, the neural RDMs across 
significant time windows identified for 2-D hierarchy (240–920 ms; 
Fig. 4b, left) were averaged and regressed with the orthogonal model 
RDM (LGA = 90° and LGS = 1). This was performed for each sensor, 
yielding the spatial distribution of neural representation strength. 
Similar procedures were applied to both global and local ranks, within 
the corresponding significant time windows (global 230–920 ms, local 
340–460 ms; Fig. 4c, left). Model-based neural decoding analyses 
(Fig. 2b, upper) were then conducted on the averaged neural RDMs 
to derive the spatial topography for each rank. Finally, cluster-based 
permutation tests (Monte Carlo method for cluster-based permuta-
tion; cluster-forming threshold P < 0.05) were conducted to identify 
sensor with significantly higher regression coefficients compared with 
the group median value (one-sided).

We applied the same analyses to the EEG data in Experiments 1 and 
2, using each EEG sensor and its neighbouring sensors (averaging 6.5 
neighbours, range 3–8) as features to investigate the spatial topogra-
phy of 2-D orthogonal geometry representational strength. Statistics 
(cluster-based permutation tests) were applied to the aggregated 
results of Experiments 1 and 2.

Searchlight analyses (source level)
To investigate the spatial topography of 2-D orthogonal geometry rep-
resentational strength at the source level, we conducted whole-brain 

analyses for both MEG and EEG experiments. We parcellated the 
8,192 vertices into 400 parcels according to the Schaefer atlas92. 
For each parcel, we conducted RSA as in the sensor level, using all  
vertices within each parcel as features. Owing to the computa-
tional complexity at the source level, temporal information was not  
included in the features. Non-parametric sign-permutation test 
was conducted to identify parcels with significantly stronger 2-D 
orthogonal representation compared with the group median  
value (one-sided). We applied FDR correction at P < 0.01 to  
account for multiple comparisons across the 400 parcels. Owing 
to the lower signal-to-noise ratio in EEG and the absence of  
individual MRI structural images for co-registration, the results for 
Experiments 1 and 2 were combined, and the statistical analyses 
were restricted to the brain parcels where MEG showed significant 
findings (P < 0.05).

Correlations between brain and behaviour
To quantify the predictive power of neural representational strengths 
on behavioural responses, we conducted a median split analysis for 
three experiments. Specifically, for each subject, we first averaged 
the neural RDM within the identified significant time window (Fig. 2a 
for Experiment 1; Fig. 3d for Experiment 2; Fig. 4b for Experiment 3). 
This averaged RDM was then individually regressed against the three 
predefined RDMs corresponding to the chain model, cluster model and 
orthogonal model. Subsequently, we computed the HRS by calculating 
the difference in regression coefficients between the orthogonal (task 
irrelevant) and chain (task relevant) models. Finally, subjects were 
divided into two groups based on a median split of their HRS values. 
To assess the relationship between HRS and behaviour, we compared 
the behavioural response accuracy of the higher HRS group with the 
lower HRS group using an independent t-test (one-sided). Extreme 
data points (beyond 3 s.d. from the mean) were excluded from the 
statistics (one subject from the combined Experiments 1 and 2; one 
subject from Experiment 3).

Model-based behavioural decoding analyses
To examine whether the hierarchical organization of the syllable 
sequence is reflected in the patterns of error responses, we carried 
out model-based behavioural decoding analyses (Fig. 4f and Sup-
plementary Fig. 4d). Erroneous responses from all subjects were col-
lectively aggregated. For each continuous rank (1–9), we calculated 
the distribution of erroneous responses, which we denote as the EP. 
Regression analysis was applied to the EP using two predictors. The 
first, CE RDM, represents a scenario where a syllable’s rank could be 
mistaken as its adjacent ranks in a 1-D chain (for example, the fourth 
syllable could be mistaken as the third or fifth). The second predic-
tor, HE RDM, encapsulates instances where a syllable’s rank could be 
confused with its adjacent ranks along the global rank dimension in a 
2-D hierarchical form (for example, the fourth syllable could be mis-
taken as the first or seventh). A significant regression coefficient (β) 
implies the existence of a corresponding organization within the EP. 
We used a bootstrapping method (N = 5,000) for the statistical analysis 
of the regression coefficients, ensuring that the current results were 
not disproportionately influenced by a single subject. Meanwhile, 
given our focus on incorrect responses, the diagonal elements of the 
matrices were omitted from the analyses. What is more, it is worth 
noting that mistaking the fourth item for the fifth could also be a 
condition where diffusion occurs along the local rank dimension in 
a 2-D hierarchical form. However, we currently classify this scenario 
as a CE, which results in an underestimation of HE strength and an 
overestimation of CE strength.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
Data supporting main findings of the study are available at https://
osf.io/drzuy/#.

Code availability
The code illustrating key analyses of the study can be found here https://
osf.io/drzuy/#.
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Plots
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The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type resting state

Design specifications n/a

Behavioral performance measures n/a

Acquisition
Imaging type(s) structural images for MEG source-level analysis

Field strength 3T

Sequence & imaging parameters A three-dimensional fast spoiled gradient echo (FSPGR) sequence was applied to obtain anatomical T1-weighted MRI 
images (256 × 256 matrix, 192 slices, 1.00 × 1.00 × 1.00 mm3 voxel; TR = 6.70 ms, TE Min Full, FOV = 25.6 × 25.6 cm, FA 
= 12°)  for each participant on a 3T GE Discovery MR750 MRI scanner (GE Healthcare, Milwaukee, WI, USA).

Area of acquisition whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Freesurfer (v7.3.2)

Normalization n/a

Normalization template n/a

Noise and artifact removal n/a

Volume censoring n/a
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Statistical modeling & inference

Model type and settings n/a

Effect(s) tested n/a

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)
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Correction n/a

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis
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Graph analysis n/a

Multivariate modeling and predictive analysis n/a
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