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Abstract

■ Deep convolutional neural networks (DCNNs) have attained
human-level performance for object categorization and exhib-
ited representation alignment between network layers and
brain regions. Does such representation alignment naturally
extend to other visual tasks beyond recognizing objects in static
images? In this study, we expanded the exploration to the rec-
ognition of human actions from videos and assessed the repre-
sentation capabilities and alignment of two-stream DCNNs in
comparison with brain regions situated along ventral and dorsal
pathways. Using decoding analysis and representational

similarity analysis, we show that DCNN models do not show
hierarchical representation alignment to human brain across
visual regions when processing action videos. Instead, later
layers of DCNN models demonstrate greater representation
similarities to the human visual cortex. These findings were
revealed for two display formats: photorealistic avatars with
full-body information and simplified stimuli in the point-light
display. The discrepancies in representation alignment suggest
fundamental differences in how DCNNs and the human brain
represent dynamic visual information related to actions. ■

INTRODUCTION

Humans possess an exquisite ability to recognize actions,
even from stimuli that greatly deviate from everyday expe-
riences, such as point-light displays consisting of only a few
discrete dots representing joint movements (Johansson,
1973). This exceptional perceptual ability likely reflects
the crucial role of actions in human learning. Actions,
exemplified by body movements, stand as a prime exam-
ple of biological motion, providing a form of “body lan-
guage” for perception and cognition. When we observe
the body movements of an individual, we not only per-
ceive actions with well-controlled arm movements, but
also gain a clear sense of whether this person is perform-
ing locomotory actions (e.g., a stretching exercise), or is
interacting with an object (e.g., shooting a basketball, or

making a golf swing) or with the other people (e.g., waving
hands in greeting, or showing directions to someone).
Hence, recognition of biological motion goes beyond just
the assignment of action labels, also encompassing action
semantic classification (Dittrich, 1993) and attribute iden-
tification of other people (Peng, Thurman, & Lu, 2017; van
Boxtel & Lu, 2012; Pollick, Lestou, Ryu, & Cho, 2002).
Over several decades, psychophysical and neuroimag-

ing studies have produced converging evidence that
recognition of biological motion is supported by dual pro-
cesses, with separate analysis pathways specialized for
kinematics of body movements and the spatial structure
of body forms (van Boxtel & Lu, 2015; Theusner, de
Lussanet, & Lappe, 2011; Lange, Georg, & Lappe, 2006;
Lu & Liu, 2006; Beintema & Lappe, 2002; Pinto & Shiffrar,
1999; Cutting, Moore, & Morrison, 1988). In particular,
fMRI experiments have shown that point-light videos
activate not only motion-selective regions such as middle
temporal area (MT)/middle superior temporal area (MST),
but also regions responsible for processing appearance
information, which is located in the projection from primary
visual cortex (V1) to inferotemporal cortex (Grossman &
Blake, 2002). For example, the extrastriate body area
(EBA), which is sensitive to human body form information,
has been reported to be activated in recognizing biological
motions (Lingnau &Downing, 2015; Downing, Jiang, Shuman,
&Kanwisher, 2001). In conjunctionwith this, numerous studies
have established that the posterior superior temporal sul-
cus (pSTS) plays a crucial role in biological motion percep-
tion, highlighting its function in integrating motion

1School of Psychological and Cognitive Sciences and Beijing
Key Laboratory of Behavior and Mental Health, Peking Univer-
sity, Beijing, People’s Republic of China, 2Institute for Artificial
Intelligence, Peking University, Beijing, People’s Republic of
China, 3National Key Laboratory of General Artificial Intelli-
gence, Beijing Institute for General Artificial Intelligence, Bei-
jing, China, 4Department of Psychology, University of California,
Los Angeles, 5Department of Statistics, University of California,
Los Angeles, 6IDG/McGovern Institute for Brain Research,
Peking University, Beijing, People’s Republic of China,
7Peking-Tsinghua Center for Life Sciences, Peking University,
Beijing, People’s Republic of China, 8Key Laboratory of Machine
Perception (Ministry of Education), Peking University, Beijing,
People’s Republic of China
*Equal contribution.

© 2024 Massachusetts Institute of Technology. Published under a
Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Journal of Cognitive Neuroscience 36:11, pp. 2458–2480
https://doi.org/10.1162/jocn_a_02233

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/36/11/2458/2475591/jocn_a_02233.pdf by guest on 23 February 2025

http://crossmark.crossref.org/dialog/?doi=10.1162/jocn_a_02233&domain=pdf&date_stamp=2024-10-16


processing and appearance processing (Thurman, van Boxtel,
Monti, Chiang, & Lu, 2016; Grossman, Jardine, & Pyles, 2010;
Grossman,Battelli, &Pascual-Leone, 2005;Grossman&Blake,
2001, 2002; Vaina, Solomon, Chowdhury, Sinha, & Belliveau,
2001) or identifying social-related information in biological
motion (McMahon, Bonner, & Isik, 2023).
Inspired by the findings from behavioral and neurosci-

ence studies, Giese and Poggio (2003) developed a compu-
tational model for action recognition based on two parallel
information processing streams: a “what” pathway and a
“where” pathway. The “what” pathway is specialized for
analyzing body forms in static image frames, whereas the
“where” pathway is specialized for processing motion
information. Each pathway comprises a hierarchy of feature
detectors, with receptive fields increasing in size and
complexity, to encode either configural forms or motion
patterns. This model can account for a range of behavioral
and neural effects, illustrating the effectiveness of adopting
computational architectures mirroring the two parallel pro-
cesses in the brain. However, the hierarchical features in
the model were predefined, emulating neural receptive
fieldsmeasured in neuroscience studies. Can these features
used in action recognition be spontaneously learned from
visual experiences of viewing human actions?
The recent advances in deep learning models provide

a plausible way to learn visual representations from a mas-
sive amount of training data, given the architecture of net-
works and the objective function of learning (Krizhevsky,
Sutskever, & Hinton, 2012; Lecun, Bottou, Bengio, &
Haffner, 1998). Simonyan and Zisserman (2014) developed
a two-stream deep convolutional neural network (DCNN)
for the recognition of actions in videos. The two-stream
DCNN consists of two parallel pathways: a spatial pathway
that processes appearance information, taking pixel-level
intensity of images as the input, and a temporal pathway
that processes motion information using optical flow as
the input. The two-stream DCNN performed well on the
action classification task and reached human-level recogni-
tion performance for realistic action videos in two challeng-
ing data sets: UCF-101 (Soomro, Zamir, & Shah, 2012) and
HMDB-51 (Kuehne, Jhuang, Garrote, Poggio, & Serre,
2011). Although the two-stream DCNN model achieved
human-level recognition performance at the behavioral
level, it is unclear whether this DCNN fully captures the
neural representation of actions in the human brain.
Recent studies comparing DCNNs and the brain for

object recognition in static images addressed the above
question, as neuroimaging studies have reported brain–
DCNN correspondences, suggesting that deep neural net-
works can learn similar representations as the human
brain to show representation alignment between biologi-
cal and artificial systems. The representation of DCNN
layers exhibits characteristic properties of neural repre-
sentations, and can predict image-driven neural responses
along the ventral visual stream (Cadena et al., 2019;
Yamins et al., 2014). Specifically, the DCNNs generate
visual representations that capture increasingly abstract

attributes of object categories (Seeliger et al., 2018; Cichy,
Khosla, Pantazis, & Oliva, 2017; Eickenberg, Gramfort,
Varoquaux, & Thirion, 2017; Khaligh-Razavi, Henriksson,
Kay, & Kriegeskorte, 2017; Cichy, Khosla, Pantazis,
Torralba, & Oliva, 2016; Hong, Yamins, Majaj, & DiCarlo,
2016; Güçlü & van Gerven, 2015; Cadieu et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014; Yamins, Hong,
Cadieu, & DiCarlo, 2013; but see Xu & Vaziri-Pashkam,
2021). Furthermore, the evidence above also showed rep-
resentation alignment between DCNN layers to brains,
where the representational structure of lower and higher
human visual areas aligns with early and later DCNN layers,
respectively. While accumulating evidence increasingly
supports the alignment of visual representations between
DCNNs and the human brain for object recognition,
further research is required to extend these findings to
dynamic stimuli. This extension is particularly important
because action recognition encompasses both the ventral
and dorsal pathways, as well as the integration of visual
processes from both pathways.

In the current study, we compared fMRI responses to
human actions with network responses of three different
DCNNs (i.e., a form-only spatial pathway DCNN, a motion-
only temporal pathway DCNN, and a two-stream DCNN).
To acquire robust representations of actions, we utilized
action videos in two presentation formats: photorealistic
avatar videos and point-light videos. These two formats
share the same kinematic movements of human actors
but differ in the level of detail regarding actor appearance
in image frames. The photorealistic avatar videos, ren-
dered with 3-D human avatars, offer detailed appearances
and high ecological validity. In contrast, the point-light
videos eliminated body shape and contextual information,
retaining only the motion trajectories of major joints
involved in actions. We selected five ROIs in the brain sit-
uated along the two visual pathways: V1 for low-level visual
information processing, middle temporal/medial superior
temporal (MT+) for motion processing, lateral occipital
complex (LOC) for object perception, EBA for human body
processing, and pSTS, which has been linked to biological
motion perception and theory of mind. Using decoding
analysis and representational similarity analysis (RSA), we
examined how well DCNNs capture the representational
structures in the human brain for action recognition.

METHODS

Model Structure and Training for
Action Recognition

The two-stream DCNN model (Simonyan & Zisserman,
2014) was adopted because its architecture resembles
the dual pathways of brain in processing biological
motion, and the model achieves human-level perfor-
mance of action recognition. As shown in Figure 1, this
two-streamDCNN takes two types of information as inputs
to classify a video into action categories. One source of
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information is the pixel-level appearance ofmoving bodies
in a sequence of static images, which serves as inputs to
the spatial pathway. The other source of information is
motion information represented by optical flow fields
(Horn & Schunck, 1981), which serves as inputs to the
temporal pathway. The two-stream DCNN model then
integrates outputs from both pathways and culminates
into a final decision via fully connected (FC) layers. Note
that we also examined two control DCNN models, in
which these two types of information were independently
processed by single-stream DCNNs, namely, a form-only
spatial pathway DCNN (i.e., spatial DCNN) and a motion-
only temporal pathway DCNN (i.e., temporal DCNN), as
shown in the top two images in Figure 1.

TheDCNNmodels were trained to perform an action clas-
sification task of 15 action categories using naturalistic videos
in the Human 3.6 M data set (Ionescu, Papava, Olaru, &
Sminchisescu, 2014). These 15 categories are

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu




of fixation, followed by 36 trials of action presentations.
Each action was displayed for 3 sec, interleaved with a
period for response and jitter of 3, 5, or 7 sec. Each run
ended with another 10 sec of fixation. Participants were
asked to indicate the semantic class of the action by press-
ing one of the three buttons on the response box.

Data Analysis

RSA of ROI and DCNN Action Representations

Representational similarity analysis (RSA) (Kriegeskorte
et al., 2008) was used to compare neural representations
with DCNN representations. Using RSA, we calculated the
similarity between response vectors of pairs of action
videos, yielding a representational dissimilarity matrix
(RDM) with the size of 36 × 36 for each DCNN layer and
each brain ROI. Therefore, layer-specific DCNN RDMs can

be compared with fMRI ROI RDMs, yielding a measure of
brain-DCNN representational similarity.
Specifically, for each layer in the DCNNs, we extracted

the DCNN layer output for each video clip (i.e., every 10
frames in each action instance). For convolutional layers,
we used a max-pooling approach to take the maximum
response value from each 2-D response field (e.g., for a
convolutional layer of 7 × 7 × 512, we took the maximum
value from each of 7 × 7matrices, yielding a feature vector
with the size of 512 dimensions). Max-pooling was con-
ducted because of two reasons. First, this max-pooling
method extracts location-invariant representations and
reduces the dimensions of feature vectors. Hence, this
method resembles the process of feature selection in
visual areas. Second, the max-pooling operation reduces
noise and increases the robustness of action representa-
tions in convolutional layers. In addition, we examined
both the average and median values in the pooling



operation and found similar structures in RDM results. These
extracted features for video clips in the same action instance
were concatenated into a vector. The sizes of feature vec-
tors were reported in the Appendix (Section 2, Table A1).
Then, for one pair of actions, we used 1 minus Spearman
correlation coefficients to represent dissimilarity between
the model activation vectors, yielding a 36 × 36 RDM (i.e.,
DCNN RDM), summarizing the representational dissimilar-
ities for each layer of a network. To increase the temporal
flexibility of the model representation, we also computed
dissimilarity scores by shifting the temporal window
between feature vectors of two video clips and used the
minimum dissimilarity score in RDM. The results of tem-
poral shifting showed a similar trend to those obtained
without temporal shifting.
For neural activities, the same correlation-based dissim-

ilarity calculation as for model measurements was used to
compute RDMs for brain ROIs. For each ROI (V1, MT+,
LOC, EBA, pSTS), the z-normalized beta activation pat-
terns of voxels were concatenated into vectors (see
Appendix Sections 2 and 3 for details). We then calculated
the correlation-based dissimilarity (1 minus Spearman’s R)
between beta patterns for every pair of action instances
within the ROI, leading to a 36 × 36 ROI RDM indexed
in rows and columns by the compared actions.
With DCNN RDMs and ROI RDMs, we compared layer-

specific model representations to region-specific brain
representations by calculating Spearman’s correlation
between the dissimilarity scores in the DCNN and ROI
RDMs for each individual participant. To establish the
upper bounds of model-brain comparisons, we first
assessed the reliability of the ROI RDMs across the group
of human participants by calculating the noise ceiling of
the fMRI data. The noise ceiling defines the upper bound-
ary of a model’s capacity to account for dissimilarity vari-
ance in brain representations, constrained by the inherent
and measurement noise in the brain activity. In other
words, it quantifies the maximum variance in the brain
representations that a model could explain. The noise
ceiling was defined as 1

n

Pn
i¼1 r vi; �vð Þ, where n denotes

the number of participants, vi denotes each participant’s
RDM, �v denotes the averaged RDM across participants,
and r denotes Spearman’s correlation coefficient (Khaligh-
Razavi, Cichy, Pantazis, & Oliva, 2018; Nili et al., 2014). We
then computed the proportion of brain variance explained
by DCNN layers: dividing the brain–DCNN Spearman’s R
correlation coefficients by the corresponding noise ceiling
of ROI representations.
Incorporating both semantic classes and action catego-

ries, we generated a full-knowledge design matrix of
RDMs, as shown in Figure 2C. This design matrix assumes
higher similarities between videos within one semantic
class, in addition to greater similarities of videos within
one action category (e.g., jumping, walking, and running
are all locomotory actions). Hence, this design matrix cap-
tures the hierarchical structures of similarity, for example,
actions in different action categories are similar to a certain

degree if they are within the same semantic class. We also
calculated an action-only design matrix as a comparison in
the Appendix (Sections 9 and 10), which assumes only
higher similarity between videos within one action cate-
gory (e.g., jumping) but ignores similarities among actions
within one semantic class. DCNN and brain ROI RDMs
were compared with design matrices to investigate
whether DCNN layers and ROIs demonstrate semantic-
level representations beyond visual similarities of actions
within the same action category.

Multivariate Pattern Analysis of ROI and
DCNN Representations

To decode action categories, we applied multivariate pat-
tern analysis (MVPA) based on linear support vector
machines. Neural representations of ROIs to each action
instance were concatenated and normalized before enter-
ing as inputs to the support vector machine training algo-
rithm. To control for feature dimensions across ROIs in the
decoding process, PCA was conducted on data of the
selected voxels of each ROI to reach a limit of 20 feature
dimensions. A nine-way decoder was then trained to clas-
sify the brain activity patterns into one of the nine action
categories using a fourfold cross-validation procedure.
Peak decoding accuracy across layers was examined
through bootstrapping analyses (see Appendix Section 6
for details). The decoding analyses complement the
design matrix correlation analyses by emphasizing action
classifications, whereas the RSAs with the design matrix
emphasize the hierarchical representations of semantic
classes and action categories.

Statistical Analysis

Statistical analysis was performed using IBM Statistical
Package for the Social Sciences (SPSS V20.0) andMATLAB.
Repeated-measures ANOVAs were applied to examine the
differences between DCNN pathways and between action
presentation types. Permutation tests were conducted to
assess the statistical significance of RDM correlations. Spe-
cifically, we permuted the correlations in the original RDM
and calculated Spearman’s correlation between the origi-
nal and the shuffled RDMs. This process was repeated
10,000 times to generate a null distribution. The p values
of the observed correlation were calculated as the percen-
tile of the observed data in the permuted null distribution.
In addition, the 95th percentile of each null distribution
was provided as dashed lines in the corresponding figures.

RESULTS

Action Representations in DCNN Layers

To investigate how semantic classes and action categories
were represented in DCNN layers, we conducted the rep-
resentation similarity analysis using the activations of each
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DCNN layer. In particular, deeper DCNN layers demon-
strated increasingly clear diagonal block patterns, indicat-
ing enhanced discrimination of action categories for both
photorealistic avatar and point-light videos (Figure A1).
Interestingly, the diagonal block patterns in RDMs of the
spatial pathway, which processed appearance informa-
tion, were less clear for photorealistic avatar videos than
those for point-light videos. This result may be due to
more varied visual cues (i.e., actor appearances) among
the photorealistic avatar videos. In contrast, for both types
of videos, the RDMs of the temporal pathway, which pro-
cesses optical-flow information, all exhibited clear diago-
nal block patterns.

To quantitatively assess how well action categories were
represented in DCNN layers, we trained classifiers to clas-
sify activations in DCNN layers to one of the nine action
categories. As shown in Figure 4A and 4B, the later layers
(Conv5, FC1, and FC2) in all three DCNNs showed signif-
icantly greater than chance-level decoding performance
( ps < .001), suggesting that the DCNN activations in the
later layers capture features crucial for recognizing action
categories. Notably, even early layers of DCNN (e.g., for
photorealistic avatar videos, starting from Conv3 for the
spatial DCNN, and Conv1 for the temporal DCNN; for
point-light videos, starting from Conv1 layers for both
the spatial and temporal pathways) demonstrated signif-
icant action classification, although yielding worse perfor-
mance than later layers. To compare the decoding
accuracies in the spatial and temporal pathways, a
repeated-measures ANOVA was performed with DCNN
Models (spatial and temporal) as a between-subject factor
and DCNN Layers as a within-subject factor. Results
showed a significant main effect of DCNN Layers, photo-
realistic avatar: F(5, 30) = 19.57, p = .049, ηp

2 = .980;
point-light: F(5, 30) = 40.69, p < .001, ηp

2 = .871, indicat-
ing that as layers go deeper, the decoding accuracies for
action categories increase. Moreover, the main effect of
DCNN Models was significant, photorealistic avatar: F(1,
6) = 25.01, p = .002, ηp

2 = .806; point-light: F(1, 6) =
43.56, p = .001, ηp

2 = .879, indicating that the temporal
pathway DCNN yielded significantly greater decoding
accuracy than those of the spatial pathway DCNN. No
significant interaction was found. We also examined
when the DCNN layers reached the peak decoding per-
formance but did not find a significant difference
between the spatial and temporal pathways (Appendix
Section 6).

To examine the impact of action presentation types on
action category decoding, we conducted a repeated-
measures ANOVA with Action Presentation Types (photo-
realistic avatar vs. point-light videos) as a between-subject
factor and DCNN Pathway and Layer as two within-subject
factors. Results showed a significant two-way interaction
between Action Types and DCNN Pathways, F(1, 6) =
141.25, p < .001, ηp

2 = .959, indicating that the decoding
accuracy was influencedmore strongly for the spatial path-
way than for the temporal pathway when the presentation

of actions changed from photorealistic avatar videos to
point-light videos. The main effect of Actions Types, DCNN
Pathways, and Layers were all significant ( ps < .001). No
other two-way or three-way interaction was found. Differ-
ences between decoding accuracies for photorealistic
avatar and point-light videos were shown in Figure 4C.
Correlations between DCNN RDMs and the full-

knowledge design matrix were calculated for each DCNN
layer (Figure 4D and 4E). In the spatial pathway DCNN,
RDMs of deeper layers increasingly resemble the full-
knowledge design matrix, revealed by a significant linear
relationship between layer depth and the resemblance
to the full-knowledge design matrix (photorealistic avatar
videos [b=0.051, p= .001], point-light videos [b=0.068,
p= .002]). In the temporal pathway DCNN, we observed a
significant linear relationship for photorealistic avatar
videos (b = 0.049, p = .006), and a trending relationship
(but not significant) for point-light displays (b= .048, p=
.083). These findings were consistent with the findings of
decoding performance.
Differences in DCNN-design correlations between

photorealistic avatar and point-light videos were shown
in Figure 4F. To examine the impact of action presentation
types onDCNN-RDM correlations, we conducted ANCOVA
analyses using the Design Matrix as the dependent variable,
Action Presentation Type as the independent variable, and
DCNN RDM as the covariates. Significant interactions were
found across all spatial pathway layers, as well as Conv5
layers of both the temporal and two-stream pathway
( ps < .05, false discovery rate [FDR]-corrected), suggest-
ing significant correlation differences between the two
action presentation types.
To quantitatively examine whether the representations

in DCNN layers capture the action category and semantic
class information, we conducted a representation-
boundary effect analysis similar to that used by
Kriegeskorte and colleagues (2008). For each DCNN layer,
we first calculated mean dissimilarities for within-action-
category video pairs, within-semantic-class pairs, and
between-semantic-class pairs (Figure 4G). We then
defined two representation-boundary effects: the action-
category boundary effect and the semantic-class boundary
effect. The action-category boundary effect referred to the
difference between the mean dissimilarities for within-
action-category pairs and within-semantic-class pairs, and
the semantic-class boundary effect referred to the differ-
ence between the mean dissimilarities for within-
semantic-class pairs and between-semantic-class pairs.
To assess the statistical significance, we performed permu-
tation analyses by shuffling the DCNN RDMs 10,000 times
and recalculating both boundary effects for each permuta-
tion. As shown in Figure 4G, the two boundary effects
were significant across all layers in the two-stream DCNN
for both photorealistic avatar and point-light videos, sug-
gesting that the two-stream DCNN can effectively capture
both action category and semantic class information.
Moreover, significant action category boundary effects
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point-light videos, V1 yielded significantly lower correla-
tions to the full-knowledge designmatrix thanMT+, pSTS,
and EBA (paired t tests, ps < .05). Differences in ROI-
design correlations between photorealistic avatar and
point-light videos were shown in Figure 5F. To examine
the impact of action presentation types on ROI-design cor-
relations, we performed independent t tests for each ROI.
Results showed that only MT+ yielded a significant differ-
ence between action presentation types ( p= .042), where
the MT+ correlation to the design matrix was significantly
higher for photorealistic avatar videos (M= 0.61) than the
point-light videos (M= 0.43). This result suggests that the
dense optical flow captured in natural videos conveys
more informative cues for decoding action categories than
sparse movements of only joints included in point-light
displays.
Moreover, we constructed two RDMs based on the aver-

age speed (i.e., how fast the dots move) and the average
scatterness (i.e., how scattered the dots are from the cen-
ter of the body) in the point-light videos to examine the
representation of low-level visual features in different
ROIs. We calculated the correlations between ROI RDMs
and the constructed RDMs of speed and scatterness. As
shown in Figure A5, V1 yielded stronger correlations to
the speed and scatterness in actions, whereas pSTS
showed the lowest correlations to these low-level visual
features.
To quantitatively examine whether the representations

in these ROIs capture both action category and semantic
class information, we conducted a representation-
boundary effect analysis (Kriegeskorte et al., 2008) by
calculating both the action-category and the semantic-
class boundary effects. As shown in Figure 5G and 5H,
for the action-category boundary effect, all ROIs exhibited
significantly greater within-semantic-class dissimilarity
than within-action-category dissimilarity (paired-samples
t tests, ps < .05, FDR-corrected). For the semantic-class
boundary effect, except V1 in both experiments and pSTS
in Experiment 1 of photorealistic avatar videos, all other
ROIs demonstrate significant effects, with greater
between-semantic-class dissimilarity than within-
semantic-class dissimilarity ( ps < .05, FDR-corrected).
Significant differences between photorealistic avatar and
point-light videos were observed in V1, where photorea-
listic avatar videos yielded much greater within-action
dissimilarity (Figure 5I).

Action Representation Alignment between Brain
ROIs and DCNN

To investigate representation alignment between DCNNs
and brain regions, we computed the correlations of RDMs
between DCNNs and brain ROIs (Figure 6). Specifically,
RDMs of human fMRI responses to photorealistic avatar
and point-light action videos were compared with RDMs
of network responses of the three different DCNNs (i.e.,
a spatial pathway DCNN, a temporal pathway DCNN, and

a two-stream DCNN) across model layers. The proportion
of brain variance explained by DCNN layers was computed
by dividing the brain–DCNN Spearman’s R correlation
coefficients by the corresponding noise ceiling. A greater
proportion of brain variance explained would indicate
greater representation similarities between DCNNs and
the brain.

To assess the degree of alignment between brain and
DCNN representations for actions, we identified, for each
DCNN, the layer number that explained the largest pro-
portion of variance for each of the five ROIs in each partic-
ipant. If brain–DCNN representation alignment exists (i.e.,
a correspondence in action representation between ear-
lier and later DCNN layers to lower and higher visual pro-
cessing regions, respectively), we would expect a greater
proportion of V1 variance explained by early DCNN layers
(e.g., Conv1 and 2 in both the spatial and temporal
DCNNs), MT+by early/middle layers in the temporal path-
way, EBA and LOC by later layers in the spatial pathway
(e.g., spatial Conv5, FC1, and FC2), and pSTS by later
layers in the temporal pathway or layers in the two-stream
DCNN (McMahon et al., 2023). We then assessed whether
the resulting layer numbers increased from lower to
higher visual regions by examining the proportion of brain
variance explained by each DCNN layer.

As depicted in Figure 6A and 6B, the layers showing the
maximum explained variance of brain RDMs did not
exhibit an increase in order from lower to higher visual
regions ( ps > .05). Thus, in contrast to the finding in
object recognition that the proportion of explained vari-
ance of lower and higher ROIs reached the maximum by
earlier and later DCNN layers, respectively (e.g., Cichy
et al., 2016), for action recognition, the later layers of
DCNNs, specifically Conv5, FC1, and FC2, consistently
explained the most variance in all brain ROIs. Differences
in ROI-DCNN correlations between photorealistic avatar
and point-light videos were shown in Figure 6A (last col-
umn). Results showed that the differences were overall
below 0, suggesting that DCNN models were more effec-
tive at explaining ROI representation variance for
point-light videos than photorealistic avatar videos. Specif-
ically, for all ROIs, several layers in the spatial DCNN
yielded significant differences between experiments
( ps < .05, FDR-corrected), whereas the differences of
the temporal DCNN were predominantly insignificant,
suggesting a greater impact of presentation type on the
spatial pathway.

Brain–DCNN Mapping Revealed by
Searchlight Analysis

To further identify brain areas with action representations
similar to those of theDCNN layers and the full-knowledge
design matrix, we used a spatially unbiased volume-based
searchlight approach. For each participant, brain RDMs for
every voxel (3-voxel radius) were constructed based on
the local activity patterns4a1.6
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represented in later layers, where representational dissim-
ilarity matrices yielded clearer clustering patterns consis-
tent with action categories. For human visual areas, all
selected brain regions, even V1, were able to demonstrate
representations that discriminate action categories. How-
ever, the comparisons between DCNN layers and ROIs
across two experiments consistently revealed a lack of
hierarchical representation alignment between DCNN
layers and human brain ROIs, where later DCNN layers
(Conv5, FC1, and FC2) yielded similarity to brain represen-
tations in both early visual areas and high-level ROIs. The
finding that actions are best represented in later layers of
DCNNs is consistent with the hypothesis that later layers in
DCNNs increasingly capture the semantic knowledge
about human actions (e.g., whether the action demon-
strates social interaction). As proposed in Saxe, McClelland,
and Ganguli (2019), the ability of DCNNs to capture
abstract semantic knowledge consisting of useful catego-
ries may be inherent in the deep connection structure.
Global optimality in DCNNs, achieved by acquiring fea-
tures to enhance visual recognition, necessitates down-
playing the contributions of unique local features for a
small set of individual instances, and emphasizing the
importance of global features shared by instances within
one category, which are likely encoded in deeper layers
of DCNNs.

The lack of representation alignment between two-
stream DCNN and brain ROIs in action recognition was
manifested by low similarities between V1 and early DCNN
layer, which was contrary to findings in some studies in
object recognition (Seeliger et al., 2018; Cichy et al.,
2016, 2017; Eickenberg et al., 2017; Khaligh-Razavi et al.,
2017; Hong et al., 2016; Güçlü & van Gerven, 2015; Cadieu
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins
et al., 2013). The discrepancy is likely because of differ-
ences between the nature of the stimuli and tasks. Previ-
ous research focused mostly on object recognition, and
the current study targeted dynamic visual stimuli of
human actions. Although the brain performs action recog-
nition with little effort, the process is sophisticated and
slow progress has been made in past decades largely
due to the obstacle of the representation issue. Specifi-
cally, we do not have adequate knowledge regarding
how to represent actions in a comprehensive and robust
way that supports sophisticated inference, so that such
representations can be used by high-level reasoning sys-
tems. Object recognition from static images can possibly
be achieved in a single stream of feedforward processing,
emulating the bottom–up visual processing in the human
brain, where low-level visual features are extracted, and
complex object patterns are gradually built upon combina-
tions of features extracted by early layers. However, pro-
cessing of dynamic visual information requires longer
periods to accumulate information. Action recognition
unfolds over time, during which communications
between brain regions happen. Hence, iterations of
bottom–up feature extraction and top–down regulations

both play important roles in making decisions of observed
actions. After a few seconds of visual processing, all ROIs
may fine-tune representations beyond low-level visual fea-
tures. Consistent with the speculations above, the present
study found that all the selected brain regions were able to
demonstrate semantic-level differentiation of action cate-
gories within seconds of stimuli presentation. However,
the two-stream DCNNs operate in a purely bottom–up
drivenmanner and lack top–down regulations (Peng et al.,
2021). Hence, the lack of clear DCNN-brain alignmentmay
result from the absence of top–down connections in
DCNNs. In contrast, the human visual system operates
through the seamlessly integrated interaction of feedfor-
ward processing and feedback regulations in a concerted
manner.
Nevertheless, the current results are consistent with a

recent evaluation (Xu & Vaziri-Pashkam, 2021) that found
limited visual representational correspondence between
DCNNs and the human brain for object recognition. The
current results are not likely to be driven by low signal-to-
noise ratio (SNR) issue, where we used an event-related
fMRI design with 5 days of repetitions, aiming to establish
relatively good SNR. This design enhanced the SNR by
showing high brain–DCNN correlation values, with the
highest correlation being 0.6 in the present study. Further-
more, the current study used functional localizers to
define brain ROIs for individual participants, whereas pre-
vious studies defined human brain regions anatomically
or through atlas.
There are other deep learning models developed for

action recognition in videos. For example, Feichtenhofer,
Fan, Malik, and He (2019) introduced SlowFast network,
which also use two pathways for action recognition from
videos. However, both pathways operate on a clip of video
as a spatiotemporal volume with different frame rates. The
architecture in SlowFast networks does not map to the
“what” and “where” pathways in the brain. The other pop-
ular network is a two-stream inflated 3-D convnet devel-
oped by Carreira and Zisserman (2017). The inflated 3-D
convnet model is built based on the inception-V1 network
structure and includes nine inception layers. In contrast to
many studies comparing human visual regions with the
DCNN models (such as AlexNet), there exists little evi-
dence on the representation alignment between visual
areas and inception layers. Hence, this article focused on
the two-stream DCNNs as an extension of standard DCNN
models, which have rich literature on human and model
comparisons. In addition, we examined AlexNet as a con-
trol model and, once again, failed to find representation
alignment between AlexNet layers and visual areas in
action recognition (Appendix Section 7).
We found a relatively consistent impact of action display

format (e.g., photorealistic avatar vs. point-light video) on
both neural activities in the brain and layer activities in
DCNNs. The spatial DCNN, as well as the early visual
ROI V1, were more impacted by a change from point-light
to photorealistic avatar videos. This indicates that for
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visual representations of more varied visual cues (i.e.,
actor appearances) in the photorealistic avatar videos,
the temporal DCNN and visual regions higher on the
hierarchy were able to rely on motion cues or more
abstract cues and were less distracted by the appearances.
It is worth noting that DCNNs showed similar results in
processing motion flow information between two display
formats, suggesting that DCNNmodels demonstrate a cer-
tain degree of generalization ability, as these models are
trained using natural videos. Furthermore, the visual
vividness of human actorsmay not be a vital factor in deter-
mining the hierarchical processing across brain regions.
However, we observed a decrease in the discrimination
ability of V1 from point-light videos to photorealistic avatar
videos, indicating that the presentation format may have a
greater impact on early visual regions. For photorealistic
avatar videos, differences in visual appearance (e.g., color)
may reduce V1 representation homogeneity of video
instances in one semantic class. Interestingly, we did not
observe superior performance of pSTS during MVPA
decoding or superior correlation to the full-knowledge
design matrix. Furthermore, the whole-brain searchlight
analysis revealed a distributed network involved in human
action recognition, including early motion processing
regions, parietal cortex (somatosensory cortex, anterior
intraparietal sulcus, and superior parietal lobule). These
regions overlap with the mirror neuron system (MNS),
consisting of the precentral gyrus, the inferior parietal
lobule, the inferior frontal gyrus, and the STS (Cattaneo



and the motion pathway in the human visual system,
respectively.

Simulation work (Feichtenhofer et al., 2016) suggests
that the fusion of the activities in the last convolutional
layers (i.e., “Conv5”) of both streams consistently yields
the best recognition accuracy across different data sets.
Accordingly, the present article adopted this fusion archi-
tecture, where the two-stream DCNN model uses the
fusion layer to first stack the outputs from the “conv5”
layers of spatial pathway and temporal pathway. The
stacked activities from 7 × 7 × 1024 tensors provide
inputs to a convolutional layer (also referred to as Conv5)
consisting of 512 filters, followed by three FC layers,
including a softmax layer.

1.2. Model training with natural action videos. The
present article used the Human 3.6 M data set (Ionescu
et al., 2014) to train the DCNN models with naturalistic
red, green, blue videos. The Human 3.6 M data set
(Ionescu et al., 2014; https://vision.imar.ro/human3.6m
/description.php) includes 15 categories of actions: giving
directions, discussing something with someone, eating,
greeting someone, phoning, posing, purchasing (i.e.,
hauling up), sitting, sitting down, smoking, taking photos,
waiting, walking, walking dog, and walking together. Each
action was performed twice by each of the seven actors.
For details of video generation, see Peng and colleagues
(2021).

The DCNNmodels are trained to perform a 15-category
action classification task. The action category with the
highest score in the softmax layer is considered to be
the model prediction for that instance. We follow a two-
phase protocol to train the network as developed by
Feichtenhofer and colleagues (2016). We first train the
single-stream networks (spatial pathway and temporal
pathway) independently with the task of 15-category
action recognition. Then, activities from the conv5 layers
of these two tra ined s ing le -s t ream DCNNs are
concatenated as inputs to train the fusion network in the
two-stream DCNN. Simulation codes used in the current
study are available at (Peng et al., 2021).

The training of DCNN models was assigned with a max-
imum of 100 epochs. Each epoch ran through a series of

mini-batches of size 16. Gradient descent was calculated
after eachmini-batch through a StochasticGradientDescent
optimizer (learning rate 10−4) to update model weights.
After each epoch, validation loss was calculated and model
weights were saved if validation loss decreased compared
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and a two-stream DCNN), each layer’s RDM exhibited
distinct structures in dissimilarity matrices, with a set of diag-
onal mini-blocks presented in some layers. Figure A2 showed
similar representation structures of actions in all ROIs.

5. Examining ROI Hierarchy

The hierarchical organization of brain ROIs serves as a
simplified, yet very useful model for understanding
information flow in the brain. This assumption is well
supported by a wealth of anatomical and functional
evidence, proving its efficacy in numerous studies, partic-
ularly those examining brain and CNN correlations.

To examine the hierarchical relationships between
ROIs, we have computed the pairwise correlations of
the RDMs from the brain ROIs, as shown in Figure A3A.
Then, we grouped these pairwise correlations by their
hierarchical “distance” (Figure A3B). Specifically, the
distance between V1 and MT+, or MT+ and LOC, is con-
sidered one hierarchical step. Therefore, the distance
between V1 and pSTS constitutes four hierarchical steps.
Next, we computed the correlation between the group
averaged pairwise correlation and the hierarchical step
size. As illustrated in Figure A3C, these two variables
demonstrated a significant linear relationship; as the hier-
archical step size increases, the dissimilarity between ROI
representations also increases (photorealistic avatar
experiment: b = 0.09, p = .043; point-light experiment:
b = 0.11, p = .001; averaged: b = 0.09, p = .005). This
finding supports the assumption of hierarchical organiza-
tion of selected ROIs in our study.

6. Peak Decoding Accuracy of DCNNs

For DCNNs, peak decoding accuracy was examined
between spatial and temporal DCNNmodels. We also con-
ducted bootstrapping analyses to examine where different
DCNN pathways reached the maximum decoding accu-
racy at different layers. For the spatial and temporal

DCNNs, layer numbers from 1 to 6 (5 convolutional layers
and 1 FC layer) were sampled with replacement, weighted
by the decoding accuracy (i.e., layers with greater decod-
ing accuracy would be more likely to be selected). One
hundred iterations were conducted, yielding 600 samples
of layer indices. In each iteration, we calculated the fre-







design matrices than the full-knowledge design matrix for



Experiment 2 with point-light displays, whereas correla-
tions to the action-only design matrix did not change
much across the two experiments. We also found a signif-
icant two-way interaction between Design Matrices and
ROIs, FGreenhouse–Geisser(1.94, 19.40) = 18.40, p < .01, ηp

2 =
.684. The three-way interaction between Experiments,
Design Matrices, and ROIs was also significant, F(4, 7) =
24.90, p< .001, ηp

2 = .934.
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