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PURPOSE. Contour integration, the process of combining local visual fragments into coher-
ent paths or shapes, is essential for visual perception. Although prior research on ambly-
opia has focused primarily on spatial domain deficits in contour integration, this study
investigates how amblyopia affects contour integration over time and examines the rela-
tionship between temporal contour integration deficits and visual functions.

METHODS. Nineteen amblyopic children (mean age, 10.9 ± 2.4 years; 17 anisometropic, 2
anisometropic/strabismic mixed) and 26 visually normal children (mean age, 10.5 ± 1.8
years) participated in this study. Temporal contour integration was assessed by measur-
ing the accuracy of detecting tilted contour paths, formed by collinear Gabor elements
with similar orientations, under slit-viewing conditions. Performance was evaluated for
amblyopic eyes (AEs) and fellow eyes (FEs) at two spatial frequencies (1.5 cpd and 3 cpd).
The slit width, orientation jitter of contour elements, and stimulus movement speed were
systematically varied across separate runs. Visual acuity and Randot stereoacuity were
assessed before testing.

RESULTS. AEs exhibited significant deficits in temporal contour processing compared with
FEs. Specifically, AEs required larger slit widths to achieve performance levels comparable
to FEs, with more severe amblyopia (i.e., worse AE visual acuity) necessitating even larger
slit widths for temporal contour integration. Temporal contour integration deficits in AEs
were most pronounced under conditions of complete Gabor collinearity or moderate
stimulus movement speeds (6.4°/s). No significant differences were observed between
FEs and control eyes. Notably, the temporal contour integration ability between the two
eyes quantified as the AE/FE ratio of slit width thresholds showed no correlation with
interocular acuity differences, stereoacuity, or spatial contour integration deficits.

CONCLUSIONS. Amblyopic children demonstrate significant deficits in temporal contour
integration in AEs, which seem to be independent of spatial contour integration deficits.
The severity of these temporal deficits increases with worse AE visual acuity. These find-
ings suggest that amblyopia is associated with temporal deficits in visual integration,
in addition to the well-documented spatial deficits, highlighting the need for a more
comprehensive understanding of amblyopic visual processing.

Keywords: amblyopia, anisometropia, contour integration, temporal integration, slit view-
ing

Amblyopia is a developmental visual disorder typi-
cally caused by strabismus, anisometropia, or selec-

tive deprivation of vision during early childhood. It is
attributed to complex neural deficits in both the striate
and extrastriate cortices,1 resulting in significant unilat-
eral visual loss, particularly in children. Amblyopia is asso-
ciated with deficits in multiple spatial visual functions,
including reduced visual acuity,2 impaired contrast sensi-
tivity,3,4 diminished stereopsis,5,6 and compromised global
shape perception.7,8 Although most research has focused on
visual function deficits in the amblyopic eye (AE), emerging
evidence suggests that the fellow eye (FE) may also exhibit
visual function impairments compared with normal control
eyes.9,10

Amblyopia not only impairs spatial processing, but also
affects temporal processing. These temporal deficits include
reduced temporal contrast sensitivity,11,12 abnormal motion-
defined form perception,13,14 impaired global motion
perception,13,15,16 temporal instability,17
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ments.16,19,20,25,26 For instance, Kiorpes et al.26 demonstrated
in amblyopic monkeys that motion sensitivity losses were
uncorrelated with spatial contrast sensitivity losses.

Contour integration, the process of integrating physically
discontinuous visual fragments into a perceived contour, is
a fundamental aspect of higher-level visual processing.27 In
a seminal study, Field et al.28 used a snake-like contour
path composed of Gabor elements embedded in a noise
background to demonstrate the critical role of continuity
among neighboring elements in contour integration. Both
spatial and temporal parameters of contour integration are
frequently examined through local mechanisms, such as
collinear facilitation, where the contrast sensitivity to a low-
contrast Gabor target is enhanced by spatially separated
collinear flankers.29–31 These findings suggest that local
interactions between neighboring elements underlie contour
integration. Similar to collinear facilitation, contour integra-
tion is thought to involve excitatory horizontal connections
between cells with similar orientation preferences within the
primary visual cortex (V1),28,32–36 supported by neurophys-
iological evidence.37–43 Neuroimaging studies have further
implicated both striate and extrastriate cortices, including
V2, V4v, and the lateral occipital complex, contributing
to contour integration.44,45 Recent research indicates that
contour integration involves both bottom-up and top-down
(reentrant) processes.46–49

Amblyopic individuals exhibit abnormal performance in
both lateral interactions50–54 and spatial contour integra-
tion.55–61 For example, Polat et al.50 found that collinear
flankers facilitated the detection of low-contrast Gabor
targets in control subjects, whereas this facilitatory effect
was absent or even reversed in individuals with strabismic
and/or anisometropic amblyopia. Similarly, studies inves-
tigating contour detection in noise revealed that contour
visibility in strabismic amblyopia was degraded by random
orientation offset from the contour path, confirming the crit-
ical role of collinearity in contour integration.55,61 Interest-
ingly, Hess and Demanins62 reported no contour integra-
tion deficits in most adults with anisometropic amblyopia
using a contour detection task. In contrast, Levi et al.57 iden-
tified mild but genuine contour integration deficits in adults
with anisometropic amblyopia using a contour discrimina-
tion test. Recently, we demonstrated that children treated for
anisometropic amblyopia still exhibited contour integration
deficits, particularly at higher spatial frequencies, even after
compensating for low-level deficits such as reduced contrast
sensitivity and degraded shape perception in AEs.60 These
findings suggest that contour integration deficits in ambly-
opia may arise from impairments in both low-level and high-
level visual processing.

Visual systems can integrate information over time to
perceive an object’s shape, even when it moves behind a
narrow slit.63 Although most studies have focused on spatial
contour integration, Kuai et al.64 were the first to investigate
the mechanisms of temporal contour integration system-
atically. They developed a contour integration task under
slit viewing conditions, in which stimuli moved horizon-
tally behind a vertical slit, allowing only a small portion
of the stimuli to be visible at any given time. They found
that young adults with normal visual acuity demonstrated
robust contour detection, even when the slit permitted only
one viewable contour element. This finding suggests that,
unlike spatial contour integration, horizontal connections
in V1 may not be necessary for temporal contour integra-
tion.32,65 Using functional magnetic resonance imaging, Kuai

et al.64 further demonstrated that temporal contour process-
ing primarily involved higher dorsal visual areas (e.g., V3B
and MT) and higher ventral visual areas lateral occipital
complex, but not early visual areas (e.g., V1 and V2). These
findings suggest that the neural mechanisms underlying the
Gestalt rule of continuity in contour integration are at least
dissociated partially between spatial and temporal domains,
with temporal contour integration relying more heavily on
higher-order visual regions.

Despite extensive research on spatial contour integra-
tion in amblyopia, the impact of amblyopia on temporal
contour integration remains poorly understood, particularly
in children. Furthermore, it is unclear whether performance
differences exist between the FEs and normal control eyes
in temporal contour integration. In this study, we adopted
the slit-viewing task developed by Kuai et al.64 to examine
temporal contour integration in 19 amblyopic children. We
compared the performance of detecting tilted contour paths
composed of collinear Gabor elements under slit viewing
conditions among the AEs, FEs, and normal control eyes.
Additionally, we investigated the influence of Gabor orien-
tation collinearity and stimulus movement speed on tempo-
ral contour integration in amblyopic and normal vision chil-
dren. We also explored the relationships between tempo-
ral contour integration deficits and other visual functions,
including monocular visual acuity, binocular stereoacuity,
and spatial contour integration.

METHODS

Participants

Amblyopia was defined as a best-corrected visual acuity in
the AE of less than 0.1 logMAR and an interocular acuity
difference of no less than 0.1 logMAR.66 This clinical defini-
tion of amblyopia was adopted as part of our inclusion and
exclusion criteria. Anisometropia was defined as a difference
of 1.00 diopters (D) or more in the myopic, hyperopic, or
astigmatic refractive error between the observer’s two eyes.
Strabismus was defined as a 5 to 50 prism diopter angular
deviation between two eyes at either near or far viewing
distances.

Nineteen amblyopic children aged 8.0 to 16.5 years
(13 boys and 6 girls; mean age, 10.9 ± 2.4 years; 17
anisometropic and 2 anisometropic/strabismic mixed) met
the inclusion criteria, and their data were included in the
analysis (detailed clinical information is provided in Table).
Three additional children participated in the study but were
excluded from the analysis because they did not meet the
inclusion criteria: one was a successfully treated patient with
refractive amblyopia (<0.1 logMAR best-corrected visual
acuity in the weak eye after treatment), and the other two
were strabismic patients with 0.1 logMAR best-corrected
visual acuity in the weak eye and a 0.1 logMAR interoc-
ular acuity difference. All participants underwent ophthal-
mological examinations and were refracted by a regis-
tered optometrist before testing. Participants who had been
prescribed refractive correction were required to wear their
glasses throughout the experiment.

Twenty-six children aged 8 to 13 years (12 boys and 14
girls; mean age, 10.5 ± 1.8 years) with normal or corrected-
to-normal visual acuity and normal stereoacuity (mean, 33.2
± 11.7 arcsec) participated as control groups (n = 11, n =
10, and n = 7 for experiments 1, 2, and 3, respectively; 1
observer participated in all 3 experiments).
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±0.25 square size in both horizontal and vertical directions
from the grid center. To avoid density cues, the center-
to-center horizontal distance between neighboring contour
Gabor elements was randomized between 0.9 and 1.1 times
the average interelement distance (AIED), which was equal
to the size of the square. The stimulus pattern was regen-
erated for each trial. Within the same trial, a random stim-
ulus image (without any contour path) was generated by
randomly shuffling the positions of all Gabors in the contour
stimulus image (Fig. 1A, middle).

Procedures

For amblyopic children, we measured contour detection
performance for AEs and FEs separately using a two-interval
forced-choice method of constant stimuli. In experiment 1,
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or repeated-measures ANOVA were employed for within-
group comparisons (e.g., AEs vs. FEs). One-way ANOVA was
used to compare performance between the amblyopic group
and the normal control group. Pearson’s r correlation was
applied to assess the potential influence of visual functions
(e.g., visual acuity, stereoacuity) on temporal contour inte-
gration deficits in amblyopic children.

RESULTS

Temporal Contour Integration in Amblyopic
Children and Children With Normal Vision

In experiment 1, we investigated the temporal contour inte-
gration ability of amblyopic children using Gabor element
arrays moving at a speed of 6.4°/s behind five slit widths
(0.4, 0.8, 1.0, 2.0, and 4.0 times the AIED). To assess perfor-
mance across different spatial scales, Gabor elements with
spatial frequencies of 1.5 and 3 cpd were used, achieved by
setting the viewing distance to 0.5 and 1.0 meter, respec-
tively.

The mean accuracy of amblyopic observers is shown
in Figures 2A and 2D. Contour detection accuracy increased
with larger slit widths for both AE and FE. High accuracy
levels (≥0.8) were achieved at a slit width of 4 times the
AIED, comparable with the performance observed when no
aperture or slit was present (i.e. the entire Gabor array was
visible). A three-way repeated measures ANOVA, with Gabor
spatial frequency (1.5 and 3 cpd), eye (AEs vs. FEs), and slit
width (0.4, 0.8, 1.0, 2.0, and 4.0 times the AIED) as factors,
revealed significant main effects of the eye, F(1, 11) = 20.60,
P < 0.001, ηp

2 = 0.65, and slit width, F(4, 44) = 54.04, P
< 0.001, ηp

2 = 0.65, indicating pronounced differences in
contour detection accuracy between AEs and FEs. Notably,
at the 0.4 AIED slit width, where only one Gabor element
or part of it was visible at any time, AEs demonstrated accu-
racy significantly above chance level (0.5) for both spatial
frequencies: 1.5 cpd (accuracy = 0.61 ± 0.08, t14 = 5.95, P
< 0.001, Cohen’s d = 1.54) and 3 cpd (accuracy = 0.61 ±
0.08, t12 = 5.08, P < 0.001, Cohen’s d = 1.41, one sample t
test).

To quantify interocular performance differences, we
calculated the AE/FE ratio of accuracy for each slit width

A
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(seven of whom also participated in experiments 1 and 2)
performed the contour detection task under five moving
speed conditions: 1.6°/s, 3.2°/s, 6.4°/s, 12.8°/s or 25.6°/s.
The slit width was fixed at 1 AIED, and the Gabor spatial
frequency was set at 1.5 cpd. Seven visually normal children
participated as the control group.

The mean accuracy of contour detection for each group
is shown in Figure 6A. A two-way ANOVA with the eye (AEs
vs. FEs) and moving speed (1.6°/s, 3.2°/s, 6.4°/s, 12.8°/s,
and 25.6°/s) as repeated measures revealed no significant
main effect on the eye (P = 0.24) but a significant main
effect of the moving speed, F(4, 28) = 18.48, P < 0.001,
ηp

2 = 0.73, indicating a significant decline in performance
of both AEs and FEs as the moving speed increased. At
25.6°/s, a speed too fast for contour identification, the accu-
racy of AEs, FEs, and normal control eyes was barely above
chance level. A one-way ANOVA with moving speed as a
repeated measure and group (amblyopic vs. control) as a
between-subject factor showed no significant main effect of
group (P = 0.99). Similarly, no significant difference in accu-
racy was observed between FEs and normal control eyes
(P = 0.57).

To examine the interocular difference in moving speed
for amblyopic children specifically, we conducted one-
sample t tests on the AE/FE accuracy ratio (Fig. 6B). A signif-
icant interocular difference was found at 6.4°/s (AE/FE ratio
= 0.96, t7 = −2.68, P = 0.031, Cohen’s d = −0.95), but not at
other moving speeds (Ps > 0.05). These findings suggest that
interocular differences in temporal contour integration for
amblyopic children are present at moderate moving speeds
but not at very slow or very fast speeds. Notably, seven
observers who performed the contour detection task under
the same condition three times (across experiments 1–3)
showed no significant improvement in performance (mean
improvement from test 1 to test 3 = −0.44% ± 2.96%).

DISCUSSION

In this study, we investigated spatial–temporal visual
integration in amblyopic children by exploring dynamic
contour integration under a slit viewing condition. Our
results showed significant temporal contour deficits in AEs
compared with FEs, whereas no differences were found
between FEs and normal control eyes. Notably, temporal
contour integration deficits in AEs were most pronounced
under conditions of complete collinearity and moderate
stimulus moving speeds. Furthermore, the temporal contour
integration ability between AEs and FEs, defined as the
AE/FE ratio of slit width thresholds, was uncorrelated
with interocular acuity differences, stereoacuity, and spatial
contour integration deficits.

Our study demonstrates that amblyopia exhibits deficits
in temporal contour processing. Specifically, AEs required
larger slit widths to achieve performance levels compara-
ble to FEs, and children with worse AE visual acuity exhib-
ited greater slit width requirements. These results align with
prior studies documenting temporal deficits in amblyopic
visual systems, including reduced temporal resolution,25,72

degraded temporal contrast sensitivity,11 increased tempo-
ral synchrony thresholds,19,20 and an expanded tempo-
ral binding window.73 Such spatiotemporal deficits may
arise from delayed information processing in the AE,74,75

as evidenced by reduced neural synchronization in the
amblyopic visual cortex.76 Additionally, these deficits likely
reflect reduced processing efficiency in the amblyopic visual
system, attributable partly to reduced template efficiency
but, to a greater extent, to a higher fraction of internal
noise.15,26,77

The lack of correlation between the AE/FE ratio of
slit width thresholds and interocular acuity differences,
stereoacuity, or spatial contour integration deficits supports
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