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a b s t r a c t

Famous places and famous people are different from their common counterparts in that we have unique
knowledge about individual items, including specific knowledge about their visual appearance and other
sensory properties. Previous studies have shown that the processing of unique entities selectively acti-
vates a network of brain regions that includes the bilateral anterior temporal lobes (ATL), posterior
cingulate cortex and adjacent medial precuneus (PCC/medPrec), medial prefrontal cortex (medPFC), and
temporal-parietal junction (TPJ). The degree to which these regions represent visual properties asso-
ciated with famous people/places is unknown. Here we compared fMRI responses in congenitally and
sighted individuals to test whether visual experience contributes to the development of unique-entity
responses in these regions. Names of unique entities (famous places, famous people) and generic items
(daily scenes such as “bridge”, face parts) were presented aurally to 13 congenitally blind and 16 sighted
participants. Sighted participants additionally viewed corresponding photographs. We found that bi-
lateral PCC/medPrec, medPFC, left TPJ, left ATL and right superior frontal gyrus were more strongly ac-
tivated by pictures of unique entities compared to generic items. Importantly, all regions showed similar
selectivity for unique entities in both groups when only names were presented. Furthermore, resting-
state functional connectivity analysis revealed that these regions were tightly interconnected in both
groups. Together, these results provide evidence for a visually-independent brain network underlying
unique entity processing.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Unique entities, such as an individual person or place, are en-
tities that are processed at the most specific conceptual level and
thus each of them is in a class with no other members (Grabowski
et al., 2001). The study of the neural mechanisms underlying the
processing of unique entities has gained important insights from
the comparison between famous places or people and their com-
mon counterparts (e.g., the Leaning Tower of Pisa vs. a regular
tower; J. F. Kennedy vs. an unknown man), as these famous enti-
ties are the set of unique entities commonly known across in-
dividuals. Neuropsychological and neuroimaging studies have
shown that the processing of famous entities, relative to non-fa-
mous ones, is more strongly associated with a distributed network
of brain regions (Damasio et al., 1996; Fairhall and Caramazza,
2013; Fairhall et al., 2014; Gesierich et al., 2012; Gorno-Tempini
and Price, 2001; Gorno-Tempini et al., 1998; Grabowski et al.,
07
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2001; Nakamura et al., 2000; Ross and Olson, 2012; Tranel, 2006),
which include bilateral anterior temporal lobes (ATL), the posterior
cingulate cortex and adjacent medial precuneus (PCC/medPrec),
medial prefrontal cortex (medPFC), and temporal-parietal junction
(TPJ). The specific role of these regions in the processing of unique
entities is not fully understood.

Several properties that tend to distinguish famous people and
places from their common counterparts could underlie the brain
activations previously observed (e.g., Ross and Olson, 2012): they
are associated with specific semantic knowledge (e.g., the Leaning
Tower of Pisa is the tilting tower in Italy where the scientist Galileo
performed his gravity experiment); they are denoted by a proper
name (“the Leaning Tower of Pisa”); and they are often associated
with episodic memories (e.g., the episode when you saw a doc-
umentary about the tower). Importantly, compared to generic
object concepts (e.g., a tower), whose mental representation tends
to be prototypical or fuzzy, an individual entity is associated with
richer and more specific perceptual knowledge. Some (e.g., the
Leaning Tower of Pisa) are associated with fleshed out visual
characteristics, with specific details of shape, color, size, and/or
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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configuration; others may depend more on auditory properties,
such as compositions or songs (the opening bars of Beethoven's
5th symphony; Bruce Springsteen's Born in the USA). There are also
individual concepts whose physical properties can only be ima-
gined, such as characters and places in novels. Is specific sensory
experience the basis for the differences of brain activations be-
tween generic concepts and famous entities presented above? One
direct way to study this question is to examine whether the ab-
sence of a particular type of sensory experience modulates the
relevant brain regions’ responses to unique entities, for instance, in
the cases of congenital blindness. The logic is that if a region
processes visually-determined properties of unique entities, then
the preference for unique entities is absent in the congenitally
blind population; if, on the other hand, the unique-entity pre-
ference reflects properties of unique entities that are established
independently of vision, such as the nonvisual variables sketched
above, similar unique entity effects in sighted and blind groups are
predicted.

In the present study, we tested the extent to which the brain
regions that have been implicated in the processing of unique
entities depend on visual experience with unique entities. Though
the brain regions showing a preference for unique entities were
found to be multimodal in previous literature (Binder and Desai,
2011; Ghazanfar and Schroeder, 2006; Lambon Ralph, 2014; Visser
et al., 2010), visual input might play a critical role in differentiating
unique entities from their common counterparts in these regions.
The possibility that stronger activity to unique entities might re-
flect the retrieval of visual knowledge is particularly relevant for
regions in temporal cortex: the bilateral ATLs are traditionally
considered to be the end point of the ventral visual pathway
(Gross, 1994; Gross et al., 1969; Kravitz et al., 2013). Studies on
macaques and humans have found that the right ATL differentiates
between individual faces (Freiwald and Tsao, 2010; Kriegeskorte
et al., 2007; see Anzellotti and Caramazza, 2014 for a review),
suggesting that it represents high-level visual information specific
to individual entities. The unique entity effects in PCC/medPrec,
medPFC, TPJ and hippocampal structures may also be modulated
by visual experience. For example, the anterior parts of the bi-
lateral precuneus are strongly activated by episodic retrieval of
imageable word pairs compared to non-imageable ones (Fletcher
et al., 1995) and considered to be an important neural substrate of
visual imagery during episodic retrieval (Buckner et al., 1995;
Fletcher et al., 1996; Halsband et al., 1998; but see Krause et al.
(1999) for an opposite view). The bilateral ventral IPLs have been
found to be involved in the interaction between visual attention
and episodic retrieval, allowing for successful memory retrieval
(Guerin et al., 2012).

To examine the role of vision in the representation of unique
entities we compared brain activity between congenitally blind
and sighted individuals. Both groups listened to names of unique
entities (famous places, famous people) and generic items (daily
scenes such as “bridge”, face parts such as “mouth”). Sighted par-
ticipants additionally performed a visual experiment viewing
photographs of these items such that visual properties of these
entities were directly available for the participants. The generic
items shown in the pictures were not personally familiar to the
participants. Regions showing a “selective” response to unique
entities only in the sighted group likely represent visually-de-
termined properties of unique entities, whereas regions showing
similar unique entity effects in both sighted and blind groups more
likely reflect properties of unique entities that are established in-
dependently of vision. The way in which the relevant regions are
intrinsically interconnected was also compared between groups
using resting-state fMRI measures to further examine whether the
absence of visual experience changes the information commu-
nication patterns. Note that face parts, rather than whole faces,
were used as the generic baseline for famous people because of
the limitation of finding stimuli for the auditory experiments. This
is not an ideal baseline because it differs from famous people not
only in terms of uniqueness but also in visual and semantic as-
pects. We thus performed both analyses using the places and
people stimuli together and also separate analyses using only the
places conditions (famous places and generic daily scenes) for
whole brain contrasts.
2. Materials and methods

2.1. Participants

Thirteen congenitally blind (4 females) and 16 sighted controls
(7 females) participated in the main fMRI experiment. The blind
and the sighted groups were matched on handedness (all right-
handed), age (blind: mean 7 SD¼38712, range¼18�58; sigh-
ted: mean7SD¼43711, range ¼26�59; t(27)o1) and years of
education (blind: mean 7SD¼1173, range¼0�12; sighted:
mean7SD¼1272, range¼9�15; t(27)o1). Resting-state fMRI
scanning was performed on 14 congenitally blind (7 females;
mean age¼45, range¼26–60) and 34 right-handed sighted par-
ticipants (20 females; age: mean 7SD¼22.571.3, range¼20–26)
in separate studies (Peelen et al., 2013; Wei et al., 2012). Nine of
these 14 blind subjects also participated in the main fMRI ex-
periment. All blind participants reported that they had been blind
since birth. None of the participants remembered to have ever
been able to visually recognize shapes. Because medical records of
onset of blindness were not available for most participants, it is
not possible to rule out that some may have had vision very early
in life. All blind participants were examined by an ophthalmologist
to confirm their blindness and to establish the causes if possible.
See Table 1 for detailed information about the congenitally blind
participants.

All participants were native Mandarin Chinese speakers. None
had any history of psychiatric or neurological disorders or suffered
from head injury. All participants provided informed consent and
received monetary compensation for their participation. The study
was approved by the institutional review board of the Beijing
Normal University (BNU) Imaging Center for Brain Research.

2.2. Stimuli

The experiments consisted of pictures or names of objects be-
longing to 18 categories. The 4 conditions that were relevant for
the present paper were the two categories of famous entities
(famous places, famous people) and the two categories of corre-
sponding generic entities (daily scenes, face parts), each contain-
ing 18 items (see Appendix for a complete list of stimuli). The
other conditions were included to study object category re-
presentations in the ventral stream, and are reported separately
(Wang et al., 2015).

In the visual experiment, stimuli were gray-scale photographs
(400�400 pixels, 10.55°�10.55° of visual angle); in the auditory
experiments they were entity names that were digitally recorded
(22,050 Hz, 16 Bit), spoken by a female native Mandarin speaker.
Stimulus presentation was controlled by E-prime (Schneider et al.,
2002). The photographs of the daily scenes and face parts were
images that the sighted participants were not personally familiar
with (see Fig. 1(A) for example).

2.3. Design and task

In the main experiment, a size judgment task was adopted
using a block design (He et al., 2013; Mahon et al., 2009; Peelen



Table 1
Background information of congenitally blind participants.

Subject Age and
gender

Years of education Cause of blindness Light Perception Reported age at blindness
onset

Experiments participated

1 21, M 12 congenital microphthalmia none 0 T
2 18, M 12 congenital glaucoma and cataracts none 0 T
3 23, M 0 congenital anophthalmos none 0 T
4 30, M 12 congenital microphthalmia and microcornea none 0 T
5 38, F 12 congenital glaucoma none 0 Both
6 45, M 12 congenital microphthalmia;cataracts;

leukoma
none 0 Both

7 44, F 9 congenital glaucoma none 0 Both
8 46, F 12 cataracts; congenital eyeball dysplasia faint 0 Both
9 53, M 12 congenital eyeball dysplasia none 0 Both

10 36, M 12 congenital leukoma faint 0 Both
11 36, F 12 congenital optic nerve atrophy faint 0 Both
12 58, M 9 congenital glaucoma and leukoma none 0 Both
13 41, M 12 congenital glaucoma none 0 Both
14 28, F 15 congenital microphthalmia; microcornea;

leukoma
faint 0 R

15 37, F 12 – faint 0 R
16 60, M 12 – faint 0 R
17 46, M 12 – faint 0 R
18 54, F 9 – faint 0 R

Note: T: task-fMRI; R: resting-state fMRI; -, no professional medical establishment of cause of blindness.

Fig. 1. Examples of picture stimuli (A) and schematics of picture and auditory word blocks (B).
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et al., 2013; Wang et al., 2015) in order to encourage participants to
retrieve object information. The auditory and the visual version of
the experiment had the same structure. Each experiment con-
sisted of 12 runs, with each run lasting 348 s. Each run started and
ended with a 12 s fixation (visual experiment) or silence (auditory
experiment) block and in between were eighteen 9 s stimulus
blocks (each from one category) with an inter-block interval of 9 s
For each stimulus block, six 1.5 s items from the same category
were presented sequentially. Each item was presented for 4 times
in total across the experiment. For each category, in half of the
blocks items were arranged in an order of increasing real-world
size, while for the remaining blocks the items were in random
order. The order of the 12 runs and the 18 blocks within each run
was pseudo-randomized across participants. See Fig. 1 for an
overview of the experimental paradigm.

2.3.1. Auditory experiment
All participants were asked to keep their eyes closed through-

out the experiment and to listen carefully to groups of six spoken
words presented binaurally through a headphone. Participants
were instructed to think about each item and press a button with
the right index finger if the items were presented in an ascending
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order in terms of real-world size and press the other button with
the right middle finger otherwise. Responses were made after the
onset of a response cue (300 ms auditory tone) immediately fol-
lowing the last item of the block (Fig. 1(B)).

2.3.2. Visual experiment
Sighted participants viewed the stimuli through a mirror at-

tached to the head coil. The stimuli were gray-scale photographs
presented at the center of the screen. Participants performed a size
judgment task that was similar to the auditory experiment. For the
famous people category, participants were asked to judge whether
the items were presented in an ascending order of height. Re-
sponses were made when the fixation dot at the center of the
screen turned from red to green right after the offset of the last
item of the block (Fig. 1(B)).

2.4. Image acquisition

All functional and structural MRI data were collected using a 3T
Siemens Trio Tim Scanner at the BNU MRI center. For the auditory
and visual fMRI experiments, high-resolution anatomical three-
dimensional magnetization-prepared rapid gradient echo
(MPRAGE) images were collected in the sagittal plane (144 slices,
TR ¼2530 ms, TE ¼3.39 ms, Flip Angle ¼7°, Matrix
Size¼256�256, Voxel Size ¼1.33�1�1.33 mm3). BOLD activity
was measured with an EPI sequence that covered the whole cer-
ebral cortex and most of the cerebellum (33 axial slices,
TR¼2000 ms, TE ¼30 ms, Flip Angle ¼90°, Matrix Size¼64�64,
Voxel Size¼3�3�3.5 mm3 with gap of 0.7 mm).

Fourteen congenitally blind and 34 sighted participants un-
derwent a resting-state scan in separate studies (see Participants).
Participants were instructed to close their eyes and to not fall
asleep. The resting-state scan lasted 6 min and 40 s for the con-
genitally blind group and 8 min for the sighted group. For the 14
blind participants, a T1-weighted MPRAGE structural image with
the same scanning parameters as reported above, and 200 vo-
lumes of resting-state functional images using echoplanar imaging
sequence (32 axial slices, TR¼2000 ms, TE¼33 ms, Flip
Angle¼73°, Matrix Size¼64�64, FOV¼200�200 mm2, slice
thickness¼4 mm, interslice gap¼0.8 mm) were acquired. For the
34 sighted participants, a T1-weighted structural MPRAGE image
in sagittal plane (128 slices; TR¼2530 ms, TE¼3.39 ms, Flip
Angle¼7°, FOV¼256�256 mm2, slice thickness¼1.33 mm, voxel
size¼1.3�1�1.3 mm3) and 240 volumes of resting-state func-
tional images using echoplanar imaging sequence (33 axial slices,
TR¼2000 ms, TE¼30 ms, Flip Angle¼90°, Matrix Size¼64�64,
FOV¼200�200 mm2, slice thickness¼3 mm, interslice
gap¼0.6 mm).

2.5. Data preprocessing

Auditory and visual experiment data were preprocessed using
Statistical Parametric Mapping software (SPM8; http://www.fil.
ion.ucl.ac.uk/spm/) and the advanced edition of DPARSF V2.1
(Chao-Gan and Yu-Feng, 2010). The first six volumes (12 s) of each
functional run were discarded for signal equilibrium. Functional
data were motion-corrected, low-frequency drifts removed with a
temporal high-pass filter (cut-off: 0.008 Hz), and normalized into
the Montreal Neurological Institute (MNI) space using unified
segmentation. The functional images were then resampled to
3 mm isotropic voxels. Functional data were spatially smoothed
using a 6 mm full width at half maximum (FWHM) Gaussian
kernel.

Resting-state data were preprocessed and analyzed using SPM
8, DPARSF V2.1 and Resting-State fMRI Data Analysis Toolkit V1.5
(Song et al., 2011). Functional data were resampled to
3�3�3 mm3 voxels. The first 6 min 40 s of the sighted group's
resting-state data were analyzed so that the two subject groups
have matching length of resting-state time-series. The first 10
volumes of the functional images were discarded. Preprocessing of
the functional data included slice timing correction, head motion
correction, spatial normalization to the MNI space using unified
segmentation, spatial smoothing with 6 mm FWHM Gaussian
kernel, linear trend removal and band-pass filtering (0.01–0.1 Hz).
Six head motion parameters, white matter and cerebrospinal fluid
signals were regressed out as nuisance covariates. White matter
and cerebrospinal fluid signals were calculated as the mean signals
in SPM's white matter mask (white. nii) thresholded at 90% and
cerebrospinal fluid mask (csf. nii) thresholded at 70%, respectively
(Chao-Gan and Yu-Feng, 2010). Two participants with excessive
head motion (42 mm maximum translation or 2°rotation) were
excluded from subsequent analysis.

2.6. Data analysis

Auditory and visual experiment data were analyzed using the
general linear model (GLM) in SPM8. For both experiments, a ca-
nonical hemodynamic response function (HRF) was convolved
with 18 hemodynamic-response predictors corresponding to the
18 category blocks (duration¼9 s) along with one regressor of no
interest for the button presses (duration ¼0 s) for each block and
six regressors of no interest corresponding to the six head motion
parameters in each run. For each participant, runs in which the
participant's head motion was greater than 3 mm or 3° were de-
leted and the remaining runs (all more than 8 runs) were entered
into the analysis. Beta weights were determined for the 18 re-
gressors for the 18 categories in each voxel for each participant
while further analyses described below were based on the 4 cate-
gories we were interested in. Note that all statistical analyses be-
low were conducted within a gray matter mask which was defined
as voxels with a probability of gray matter higher than 0.4 in the
SPM5 template and within the cerebral regions (#1 - #90) in the
Automated Anatomical Labeling template (Tzourio-Mazoyer et al.,
2002).

We first carried out a whole-brain conjunction analysis (Ni-
chols et al., 2005) to identify regions showing significant unique
entity effects in the visual experiment: random-effect GLM ana-
lyses were conducted for famous places 4 daily scenes and fa-
mous people 4 face parts, each separately meeting the sig-
nificance threshold of AlphaSim corrected p o0.05 (single voxel
po0.01, cluster size Z891 mm3) within the gray matter mask.
Overlapping regions were considered unique entity specific
regions.

Given our primary interest in understanding whether regions
showing unique entity preference in the sighted group are visually
determined, we carried out the in-depth analyses to compare the
activation preference in auditory experiments of sighted and blind
groups in these regions. Specifically, for each ROI, beta values were
extracted and averaged across voxels for each condition in the
sighted auditory and blind auditory experiments. Two-way mixed-
design ANOVAs were carried out for the place category and people
category separately, with visual experience as between-group
factor (blind vs. sighted) and uniqueness as within-group factor
(famous vs. non-famous).

To further examine unique entity effects in the auditory ex-
periments, we also conducted whole-brain conjunction analyses to
identify unique entity specific regions in the sighted auditory and
blind auditory experiments. For each auditory experiment, ran-
dom-effect GLM analyses were conducted for famous places 4
daily scenes and famous people 4 face parts, each separately
meeting the significance threshold of AlphaSim corrected po0.05
(single voxel po0.01, cluster size Z891 mm3) within the whole-

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


X. Wang et al. / Neuropsychologia 87 (2016) 144–156148
cerebrum gray matter mask. Overlapping regions were considered
unique entity specific regions. To locate unique entity specific re-
gions independent of visual input and visual experience, a further
conjunction was conducted by overlapping regions showing sig-
nificant unique entity effects across all three experiments.

In addition to the above analyses, whole-brain group-by-un-
iqueness ANOVAs were also conducted to more comprehensively
explore the potential differences between blind and sighted
groups in terms of unique entity effects. Specifically, two-way
mixed effect whole-brain ANOVAs were conducted for place and
people categories respectively, with visual experience as between-
group factor (sighted vs. blind) and uniqueness as within-group
factor (famous vs. non-famous). Significance threshold for the
main effects and the interaction effect of each ANOVA was set as
AlphaSim corrected po0.05 (single voxel po0.01, cluster size
Z891 mm3) within the gray matter mask.

ROI-based resting-state functional connectivity analysis was
then performed. The seed ROIs were defined as unique entity
preferring regions identified in the sighted visual experiment. For
each participant, the mean time series of the seed ROIs were
correlated with each other to construct a brain network. The re-
sulting correlation values were Fisher transformed. One-sample t-
tests were conducted to identify significant edges connecting each
pair of ROIs (Bonferroni corrected, alpha o0.05). The strength of
each edge was compared between the sighted and congenitally
blind groups by using two-sample t-tests (Bonferroni corrected,
alpha o0.05). We further examined the strengths of RSFCs be-
tween the seed ROIs and a control site to rule out the possibility
that the potential network being observed was simply driven by
confounding noise. The control site was defined as a 6 mm-radius
sphere centered at the MNI coordinates of �45,�81,20 in the left
lateral occipitotemporal cortex, a region that was found to re-
present object shape in a subject cohort similar to the current
study (Peelen et al., 2014).

Finally, as explained in the Introduction, the famous vs. non-
famous contrast of the people condition was not ideal, as face
parts differed from famous people in both uniqueness and other
aspects such as visual properties and semantic information. In
addition, there was a slight task difference between the famous
people and the face part conditions (Section 2.3, Design and
Tasks), which further complicates the interpretation of these re-
sults. We thus performed a separate validation analysis where the
contrast between famous places and daily scenes was taken as the
main contrast to investigate the unique entity-specific effects in
the whole brain analyses, on the basis of which ROI and whole-
brain conjunction analyses were further carried out. Detailed in-
formation of the validation analyses is presented in the Supple-
mentary Materials.

All results in this paper are shown in the MNI space and pro-
jected onto the MNI brain surface using the BrainNet viewer
(http://www.nitrc.org/projects/bnv/) (Xia et al., 2013).
3. Results

3.1. Behavioral results

In the size judgment tasks, participants compared the real-
world size of the six items in each block, indicating whether items
were presented in an order of increasing real-world size. Note that
it is difficult to assess the accuracy as some items have comparable
sizes and subjects’ judgments varied to some extent. We none-
theless checked whether the different conditions were associated
with systematically different response patterns to rule out po-
tential peripheral differences such as differences in the number of
button presses: The proportion of the “increasing order” responses
was on average 43% for the sighted visual experiment (57% for
famous places, 47% for daily scenes, 37% for famous people, and
32% for face parts), 41% for the sighted auditory experiment (52%
for famous places, 44% for daily scenes, 30% for famous people, and
36% for face parts) and 41% for the blind auditory experiment (52%
for famous places, 47% for daily scenes, 32% for famous people, and
33% for face parts). There were no significant differences between
famous places and daily scenes or between famous people and
face parts in any experiment (all ps40.05). The visual and audi-
tory experiments in sighted group were also comparable across all
conditions (ts(15)o1.3, ps40.05), as were the two auditory ex-
periments of sighted and blind groups (ts(27)o1, ps40.05).

3.2. Unique entity effects in sighted visual experiment

A whole-brain random-effects contrast between famous places
and daily scenes in the sighted visual experiment activated areas
of bilateral PCC/medPrec, bilateral medPFC including superior and
middle frontal cortex, anterior cingulate cortex and rectus gyrus,
and small clusters in left putamen, left ATL including the anterior
part of middle and inferior temporal gyrus, left TPJ including the
angular gyrus and posterior parts of the middle and superior
temporal gyrus, and right superior frontal gyrus (SFG). See Table 2
and Fig. 2(A) for detailed information including peak coordinates, t
values, and cluster sizes.

A whole-brain random-effects contrast between famous people
and face parts in the sighted visual experiment revealed a set of
regions that partly overlapped the famous place contrast (Table 2
and Fig. 2(A)): bilateral medPFC including the superior and middle
frontal cortices, anterior cingulate cortex and rectus gyrus, bi-
lateral PCC/medPrec and adjacent posterior cingulate cortex, lin-
gual gyrus and calcarine, bilateral TPJs including the angular gyrus,
inferior posterior lobule, supramarginal gyrus and posterior su-
perior and middle temporal gyrus, bilateral ATLs, bilateral hippo-
campus and parahippocampal gyrus (HG/PHG), left middle frontal
gyrus and right inferior frontal gyrus.

A conjunction analysis (Nichols et al., 2005) revealed brain
regions underlying the selective processing of both famous places
and famous people, which included the bilateral PCC/medPrec,
medPFC, left ATL, left TPJ and right SFG (Table 2 and green patches
in Fig. 2(A)). These results are consistent with previous studies
investigating the representation of unique entities (Gesierich et al.,
2012; Gorno-Tempini et al., 1998; Grabowski et al., 2001; Ross and
Olson, 2012).

3.3. Unique entity effects in the auditory experiments: ROI analysis

The regions identified by the whole-brain conjunction analysis
of the sighted visual experiment (green patches in Fig. 2(A))
were defined as regions of interest (ROIs) to test for unique entity
effects in the auditory experiments of the blind and sighted
groups.

For each ROI, we carried out two-way mixed design ANOVAs,
separately for the place and person categories, with group as a
between-subject factor (blind vs. sighted) and uniqueness (fa-
mous, non-famous) as a within-subject factor. Of interest was
whether there were unique entity effects in the place or the per-
son category in the auditory experiments (main effect of unique-
ness) and whether these effects were modulated by visual ex-
perience (group by uniqueness interaction).

All five ROIs showed significant main effects of uniqueness, for
both the place and the person categories (Table 3). None of the
ROIs showed an interaction between group and uniqueness (Ta-
ble 3). These results indicate that the unique entity effects in the
bilateral PCC/medPrec, bilateral medPFC, left TPJ, left ATL and right
SFG generalized to the auditory modality, for both place and
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person categories, and that these effects were equally strong in the
blind and sighted groups. The functie



Table 3
Results of ANOVAs (F values) within ROIs showing unique entity effects for both
place and people categories in the sighted visual experiments (green patches in
Fig. 1).

　 PCC/medPrec medPFC Left ATL Left TPJ Right SFG

People category: Famous people vs. face parts
U/F(1,27) 111.08*** 129.61*** 86.54*** 75.56*** 48.00***
G/F(1,27) 3.85 0.76 3.86 0.04 0.63
U�G/F(1,27) 0.54 0.22 0.10 1.24 0.07

Place category: Famous places vs. daily scenes
U/F(1,27) 22.78*** 4.24* 7.97* 11.00** 8.87**
G/F(1,27) 2.42 2.41 4.19 1.59 1.07
U�G/F(1,27) 0.04 0.43 0.35 1.36 2.39

Notes: U: main effect for uniqueness; G: main effect for group (Sighted vs. Blind); U�G:
Interaction effect between uniqueness and group;*: po0.05;**: po0.01;***: po0.001.
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3.4. Unique entity effects across categories and experiments: whole-
brain conjunction analyses

We further investigated the unique entity effects across the whole
brain in blind and sighted auditory experiments. Regions showing a
significant preference for unique entities in each of the two auditory
experiments were defined similarly as in the sighted visual experi-
ment. The resulting regions (Fig. 2(B) and (C), green patches) were
then superimposed on the regions found in the sighted visual ex-
periment (Fig. 2(A), green patches) to reveal unique entity specific
regions independent of visual input and visual experience. As shown
in Fig. 4(A), overlapping regions across both categories and all three
experiments (dark red patches) were observed in the bilateral PCC/
Fig. 3. Activity in the sighted and blind auditory experiments within unique-entity RO
denotes the beta value of brain activation relative to rest. The bars for the sighted visual
the auditory experiments. BA: blind auditory experiment; SA: sighted auditory experimen
hoc t-test of uniqueness effect. ***: po0.001. **: po0.01,*: po0.05. (For interpretation
version of this article.)
medPrec. In addition, clusters in bilateral medPFC, bilateral SFG and
left TPJ showed significant unique entity effects across categories in
the sighted visual and sighted auditory experiments (blue patches).

As the conjunction method is quite conservative (Caria et al.,
2012; Nichols et al., 2005), especially in the case of more than
2 contrasts, we lowered the threshold to uncorrected p o0.05 for
each contrast in each experiment to observe potential consistency
across categories and experiments. By lowering the threshold, re-
gions showing unique entity effect across both categories and all
three experiments (dark red patches in Fig. 4(B)) were observed in
the bilateral PCC/medPrec, bilateral SFG, left TPJ and in left medPFC.
In the left ATL, there was a small overlap (not visible on the surface
in Fig. 4(B)) between a cluster showing cross-category unique en-
tity effects across the sighted visual and sighted auditory experi-
ments (blue temporal cluster in Fig. 4(B)) and a cluster showing
cross-category unique entity effects across the sighted visual and
blind auditory experiments (cyan temporal cluster in Fig. 4(B)). The
middle part of the left STG exhibited cross-category unique entity
effects in both auditory experiments (orange temporal cluster in
Fig. 4(B)). This might reflect the word length difference between
unique and common entities (longer word stimuli for unique en-
tities, Appendix) or mismatch of other aspects of low-level word
features. We thus focused on the results obtained in both the au-
ditory experiments and the visual experiments, where different
types of stimuli were used (words vs. pictures) and the low level
effects specific to one type of stimuli could be excluded (conjunc-
tion results across experiments in Fig. 4, dark red regions).

Taken together, the whole-brain conjunction analyses are in line
with the ROI findings, showing that unique entity effects in the
Is defined by the sighted visual experiment (green patches in Fig. 2). The y-axis
experiment (on the right side of the dashed line) are presented for comparison with
t; SV: sighted visual experiment. Asterisks denote the significance level of the post-
of the references to color in this figure legend, the reader is referred to the web



Fig. 4. Conjunction maps of regions showing unique entity effects to both place and people categories for two or three experiments. Note that each experiment result was
itself a conjunction of place and people category effects. A) conjunction map of regions showing significant unique entity effects, with each contrast thresholded at AlphaSim
corrected po0.05 (single voxel po0.01, cluster size Z891 mm3); B) conjunction map of regions showing significant unique entity effects, with each contrast thresholded at
uncorrected po0.05. In both figures, dark red patches indicate overlapping regions across all three experiments; orange patches indicate overlapping regions across the two
auditory experiments; blue patches indicate overlapping regions across sighted visual and sighted auditory experiments; cyan patches indicate overlapping regions across
sighted visual and blind auditory experiments. BA: blind auditory experiment; SA: sighted auditory experiment; SV: sighted visual experiment. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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bilateral PCC/medPrec, medPFC, left TPJ, right SFG and left ATL were
largely independent of visual experience. These results were also
confirmed by the validation analyses based exclusively on the contrast
between famous places and daily scenes (Supplementary Materials).

3.5. Regions showing significant uniqueness-by-group interaction effects

As revealed by whole-brain group-by-uniqueness ANOVAs, a
cluster in the right posterior inferior occipital cortex showed a
significant group–by-uniqueness interaction effect in both place
and people categories (Fig. 5, yellow patch). Interestingly, this
region showed a significant unique entity preference in the blind
(t(25)¼2.58, po0.02, averaged across place and people categories),
but showed the opposite pattern in the sighted (t(31)¼�5.25,p
o0.0001). There were also broader regions showing an interaction
for the place contrast only, including the right cingulate and
supplemental motor area, bilateral temporal and postcentral/
Fig. 5. Regions showing significant uniqueness-by-group interaction effects across pla
interaction effect for the place category and red patch indicates those for the people categ
auditory experiment; SA: sighted auditory experiment. (For interpretation of the refere
article.)
precentral regions (Fig. 5, blue patches), with the general trend of
showing the generic-entity advantage in the sighted group only
(data not shown here for simplicity). The causes for such group
differences remain to be further investigated.

Whole-brain ANOVAs also identified brain regions showing
significant uniqueness effects and group effects respectively. De-
tailed results concerning the main effects are reported in the
Supplementary Materials. Briefly here, for both categories, bi-
lateral PCC/medPrec, medPFC, left ATL, left TPJ, bilateral SFG and
bilateral superior temporal cortex were identified as showing
significant main effect of uniqueness, with a preference for famous
entities (Supp. Fig. 1), which is highly similar to the results we
observed above in Section 3.3 (Fig. 4); the bilateral posterior oc-
cipital/temporal cortex showed a significant main effect of group,
with significantly stronger responses in the blind auditory ex-
periment (Supp. Fig. 2), which is consistent with previous findings
that the visual cortex of blind people shows plastic functional
ce and people categories. Blue patches indicate brain regions showing significant
ory; yellow patch indicates overlapping regions across the two categories. BA: blind

nces to color in this figure legend, the reader is referred to the web version of this



Fig. 6. Similar intrinsic functional brain networks for unique entity processing in the sighted and congenitally blind groups. The width of the edge indicates the connectivity
strengths between seed ROIs (range of median r: blind: 0.49–0.70; sighted: 0.34 – 0.65). R: right; L: left; Bi: bilateral.

Table 4
Resting-state functional connectivity matrix of the ROIs showing unique entity effects for both place and people categories in the sighted visual
experiments. T values are presented, with degrees of freedom shown in the left-most column. RSFCs with control site are indicated by italics.

PCC/medPrec medPFC Left ATL Left TPJ Right SFG
medPFC 7.23***

Blind Left ATL 7.95*** 10.37***
t(11) Left TPJ 10.17*** 12.80*** 10.80***

Right SFG 8.48*** 12.11*** 9.53*** 13.55***
Left LOTC 2.95 1.00 0.81 2.35 1.85

PCC/medPrec medPFC Left ATL Left TPJ Right SFG
medPFC 21.84***

Sighted Left ATL 13.87*** 19.68***
t(33) Left TPJ 20.44*** 23.39*** 22.42***

Right SFG 12.59*** 19.82*** 10.42*** 14.13***
Left LOTC 1.88 0.49 0.41 2.58 0.53

PCC/medPrec medPFC Left ATL Left TPJ Right SFG
medPFC �0.99

Sighted vs. Blind Left ATL �0.49 �1.16
t(44) Left TPJ �1.57 0.63 �0.24

Right SFG �2.18 �0.73 �1.91 �0.94
Left LOTC �1.95 �0.81 �1.12 �1.18 �1.58

Notes: *: p o0.05;**: p o0.01;***: p o0.001; Bonferroni corrected.
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reorganization to auditory stimuli (Collignon et al., 2011; Noppe-
ney, 2007; Pascual-Leone et al., 2005).

3.6. The intrinsic unique entity network: resting-state functional
connectivity analysis

To test for intrinsic or spontaneous functional connectivity be-
tween the regions showing unique-entity effects, and to test whe-
ther this connectivity pattern is modulated by visual experience, we
carried out resting-state functional connectivity (RSFC) analysis in
both the blind and sighted groups, using the five ROIs (green pat-
ches in Fig. 2) identified by the intersection of place and people
unique-entity effects in the sighted visual experiments. In both
groups, the five ROIs were significantly connected to each other
(Bonferroni corrected, alpha o0.05, sighted: t(33)410.42, blind:
t(11)47.23, see Fig. 6 and Table 4). In the between-group compar-
ison, no significant differences (|ts(44)|o2.18) were observed for the
RSFC strengths between any ROI pairs (Table 4) after Bonferroni
correction, indicating that these brain regions are interconnected
with each other to form a network underlying the processing of
unique entities in both sighted and congenitally blind individuals.

By contrast, we did not observe any significant connections
between the unique entity selective ROIs and a control region in
left lateral occipitotemporal cortex (see Section 2.6) in either of the
two groups after Bonferroni correction (Table 4, italics), indicating
that the tight interconnections between the unique-entity related
ROIs we observed was not driven by some general confounding
factor but reflect intrinsic synchronization that may be a critical
basis for unique entity processing.
4. Discussion

The present study examined the role of visual experience in the
representation of unique entities. Contrasting pictures of famous
places and people with pictures of their common counterparts
revealed activation in a network of brain regions that includes
bilateral PCC/medPrec, bilateral medPFC, left ATL, left TPJ and right



SFG. Region of interest analyses and whole-brain conjunction
analyses revealed that all these regions also showed a significant
unique entity preference when congenitally blind and sighted
participants listened to the names of unique entities. Furthermore,
resting-state functional connectivity analyses revealed that these
regions spontaneously connected tightly with each other but not
with functionally distinct control sites in both sighted and blind
groups. Together, these results provide evidence for a visually-in-
dependent brain network for the processing of unique entities.
These findings extend recent research on the functional organi-
zation of higher-order cortex of congenitally/early blind in-
dividuals, further supporting the hypothesis of a modality-in-
dependent, supramodal organization of the human brain, i. e.,
exhibiting qualitatively similar task-related activation patterns
across multiple sensory modalities even if overall activation
strengths may differ across modalities or groups (Bedny et al.,
2009; Bi et al., 2016; Kitada et al., 2014, 2013; Ricciardi et al., 2013).

An important aspect of the current study was the inclusion of
two categories: places and people. In the main analyses, we fo-
cused on results that were common to these two categories, fol-
lowing previous work on unique entity processing (Gorno-Tempini
and Price, 2001; Grabowski et al., 2001; Ross and Olson, 2012).
While we observed several regions that appeared selective for the
famous 4 non-famous contrast involving one of the two cate-
gories only (for sighted visual experiment, see Fig. 2), we are
cautious in interpreting these results, as the two categories had
different control conditions: the famous people category was
contrasted with face parts (with slight task differences), whereas
the famous places category was contrasted with generic places
(this was due to the constraints of the auditory task). While results
of one of these contrasts might reflect multiple processes/effects,
including differences in low-level visual features (e.g., the lingual
and calcarine activation for the famous people vs. face parts con-
trast), category-selective representations or task differences, acti-
vation common to both contrasts is likely to reflect properties that
are more strongly associated with unique entities relative to
generic items irrespective of category or specific control condi-
tions. Note that this is not to say that different types of unique
entities necessarily form one uniform “unique category” or that
they entail representations in these regions to the same degree. In
fact, several studies have observed brain regions selective to one of
these categories, as well as selectivity for specific categories at
different sub-sections of ATL, at individual, kind, and common
levels (e.g., Fairhall and Caramazza, 2013; Fairhall et al., 2014;
Gorno-Tempini and Price, 2001). Our analyses here highlight the
finding that independently of whether the representations in the
observed sites differ across categories, they are all more relevant
for unique items than for generic items. Indeed, the validation
analyses using only the contrast between famous places and daily
scenes yielded highly similar results to those obtained in the main
analyses combining both the people and the place categories.

The regions we found are highly consistent with previous
studies investigating the neural substrates underlying unique en-
tity processing (Damasio et al., 1996; Fairhall and Caramazza,
2013; Fairhall et al., 2014; Gesierich et al., 2012; Gorno-Tempini
and Price, 2001; Gorno-Tempini et al., 1998; Grabowski et al.,
2001; Nakamura et al., 2000; Ross and Olson, 2012; Tranel, 2006).
As noted in the Introduction, specific aspects of the unique entity
effects observed in the previous literature might be visually dri-
ven, induced by attention-modulated visual specification (van
Belle et al., 2010) or the interaction between visual attention and
episodic memory retrieval (Guerin et al., 2012) of visually pre-
sented unique entities, or richer and finer visual imagery of
verbally-presented unique items. Importantly, the finding that
bilateral PCC/medPrec, medPFC, left ATL, left TPJ and right SFG
showed similar unique entity effects in the congenitally blind and
sighted groups during auditory processing excludes a purely visual
account for these regions’ roles in unique entity processing.

If not due to visual processes, what nonvisual properties drive
the preference to unique entities in these regions? As mentioned in
the Introduction, unique entities are distinguished from their com-
mon counterparts on at least the following aspects: unique entities
1) have more specific semantic associations; 2) are often denoted by
a proper name; and 3) are often associated with rich and more
specific episodic memory. Besides, it has also been proposed that
unique entities 4) are more frequently involved in social interaction
and thus have higher social significance (Ross and Olson, 2012).
These characteristics, which do not necessarily rely on visual ex-
perience, might contribute to the unique entity effects in these re-
gions. The first two aspects – semantic specificity and names –

might explain specific activations in response to unique entities in
the left ATL, as previous literature has characterized this region as a
convergence zone that associates stored semantic knowledge with
proper names (Belfi and Tranel, 2014; Damasio et al., 2004, 1996;
Gorno-Tempini and Price, 2001; Grabowski et al., 2001; Ross and
Olson, 2012; Tranel, 2006) or a general semantic hub involved when
differentiation of specific-level concepts is required (Patterson et al.,
2007; Rogers et al., 2006; Tyler et al., 2004). In particular, by ma-
nipulating the information (semantic uniqueness, semantic richness,
presence/absence of a proper name) associated with the novel face/
place stimuli in a training paradigm, Ross and Olson (2012) found
that the activity in left ATL was modulated by both unique semantic
information and proper names. Noteworthy, while traditionally
ventral ATL regions have been found to be multi-modal and sensi-
tive to semantic specificity (Lambon Ralph, 2014; Visser and Lambon
Ralph, 2011; Visser et al., 2010), the left ATL region we found was
located more dorsally. The absence of the ventral ATL might be re-
lated to insufficient signal coverage in this part (Halai et al., 2014;
Visser et al., 2010). Indeed, we computed the temporal signal-to-
noise ratio (tSNR) maps (Fan et al., 2013) for each of the three ex-
periments (Supp. Fig. 5), and found that the ventral part of ATLs had
relatively low signal quality which could lead to low detection
power (Murphy et al., 2007). As suggested by previous findings that
the left TPJ might be engaged in lexical retrieval (Gesierich et al.,
2012; Gorno-Tempini et al., 2004) or semantic processing (Binder
et al., 2009; Gesierich et al., 2012), the first two characteristics might
also account for the unique entity effects in the left TPJ.

The unique entity effects in the left TPJ as well as in bilateral
PCC/medPrec and medPFC might be related to the last two char-
acteristics of unique entities – episodic retrieval and social interac-
tion – as these regions have been frequently reported to be involved
in episodic memory processing and/or social cognition (Bedny et al.,
2009; Buckner and Carroll, 2007; Cabeza et al., 2008; Carter and
Huettel, 2013; Cavanna and Trimble, 2006; Hassabis and Maguire,
2007; Hassabis et al., 2007; Lepage et al., 2000; Maguire et al., 2001;
Sestieri et al., 2011; Svoboda et al., 2006). Interestingly, these
properties, especially those related to social cognition, are particu-



Table A1
Complete List of Stimuli (original Chinese stimuli in parentheses).

Famous people Famous places Face parts Daily scenes
Jackie Chen White House Tip of nose Supermarket
(成龙) (白宫) (鼻头) (超市)
Teresa Teng Beihai Park Nose Castle
(邓丽君) (北海) (鼻子) (城堡)
Deng Xiaoping Beijing Railway Station Forehead Kitchen
(邓小平) (北京站) (额头) (厨房)
Ge You Potala Palace Earlobe Bridge
(葛优) (布达拉宫) (耳垂) (大桥)
Gong Li Forbidden City Ear Edifice
(巩俐) (故宫) (耳朵) (大厦)
Hu Jintao National Center for

the Performing Arts
Moustache Palace

(胡锦涛) (国家大剧院) (胡子) (宫殿)
Li Guyi Pyramid Eyelashes Classroom
(李谷一) (金字塔) (睫毛) (教室)
Lu Xun Beijing National Stadium Cheek Church
(鲁迅) (鸟巢) (脸颊) (教堂)
Mao Zedong Great Hall of the People Eyebrows Theatre
(毛泽东) (人民大会堂) (眉毛) (剧院)
Na Ying Beijing National Aquatics

Center
Tongue Living room

(那英) (水立方) (舌头) (客厅)
Ni Ping Tian’anmen Pupil Pavilion
(倪萍) (天安门) (瞳孔) (凉亭)
Song Dandan Temple of Heaven Hair Dining Hall
(宋丹丹) (天坛) (头发) (食堂)
Soong Ching-ling Beijing West Railway

Station
Chin Study

(宋庆龄) (西客站) (下巴) (书房)
Song Zuying Opera Australia Teeth Bedroom
(宋祖英) (悉尼歌剧院) (牙齿) (卧室)
Wen Jiabao CCTV Headquarters Eyelid Balcony
(温家宝) (央视大楼) (眼睑) (阳台)
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significant group-by-uniqueness interaction for both the people
and place categories in a cluster of the right posterior inferior
occipital cortex. This region showed stronger activation to famous
entities in the blind group but not in the sighted group (Section
3.5.). This additional unique-entity preferring region in the blind
might be due to plastic changes of occipital cortex caused by the
lack of visual input. For instance, blind people's primary visual
cortex has been shown to be associated with episodic retrieval
(Raz et al., 2005) and language processing (Bedny et al., 2011).
These are both possible variables underlying the uniqueness effect.

Interestingly, in addition to similarity in terms of regional ac-
tivation profiles in bilateral PCC/medPrec, bilateral medPFC, left
ATL, left TPJ and right SFG regions across sighted and blind groups,
we found significant RSFC between each pair of the above regions
in both groups. Furthermore, these regions were tightly connected
with each other but not with a functionally distinct object shape
related control region. While these results leave open the possi-
bility that unique-entity preferring regions are additionally con-
nected to other brain regions outside of the unique entity network,
they provide a plausible network basis for the representation of
unique entities that is independent of visual experience.

This interconnected visually-independent brain network un-
derlying unique entity processing largely overlaps with previously
described brain networks that have been linked to multiple distinct
functions: the theory of mind network (Gallagher and Frith, 2003;
Mahy et al., 2014), the semantic network (Binder et al., 2009) and
the network for episodic memory processing (Rugg and Vilberg,
2013). In particular, the unique entity network is highly similar to
the default-mode network (Biswal et al., 2010; Buckner et al., 2008;
Raichle, 2015), which has been shown to be deactivated during
explicit tasks compared to rest, with the extent of deactivation
being correlated with task difficulty (Buckner et al., 2008; Fox et al.,
2005; Gilbert et al., 2012; Harrison et al., 2011; Humphreys et al.,
2015). Interestingly, in most cases the unique entity preferring
regions exhibited positive activation to unique entities (see Fig. 3)
in our study, indicating that the unique effects we obtained could
not be merely driven by task difficulty effects. The overlap of these
multiple networks points to various possible cognitive processes
that might underlie unique entity processing. It is possible that
some shared underlying component(s) across different cognitive
processes are at stake; it is also possible that the unique entity
preferring brain regions are visible across different systems be-
cause they play highly integrative roles. Indeed, these inter-
connected regions were also identified as cortical hubs of the in-
trinsic human brain network (Buckner et al., 2009). Why and how
these regions evolved or developed to link tightly with each other
and to be engaged in various cognitive processes including unique
entity processing, and the exact roles that these regions play in
unique entity processing, warrant further investigation.

In summary, we found a similar set of brain regions underlying
the processing of unique entities in congenitally blind and sighted
participants across visual and nonvisual tasks. Resting-state
functional connectivity showed that in both groups, these regions
connected to each other to form a tightly linked intrinsic func-
tional network. Our results suggest that the neural mechanisms
for unique entities develops and functions without visual input or
visual experience. The correspondence between sighted and con-
genitally blind participants might be explained by an intrinsic
brain network for processing of abstract or linguistically based
semantic, social or episodic contents of unique entities.
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