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Abstract Visual object recognition in humans and nonhu-

man primates is achieved by the ventral visual pathway

(ventral occipital-temporal cortex, VOTC), which shows a

well-documented object domain structure. An on-going

question is what type of information is processed in the

higher-order VOTC that underlies such observations, with

recent evidence suggesting effects of certain visual fea-

tures. Combining computational vision models, fMRI

experiment using a parametric-modulation approach, and

natural image statistics of common objects, we depicted the

neural distribution of a comprehensive set of visual

features in the VOTC, identifying voxel sensitivities with

specific feature sets across geometry/shape, Fourier power,

and color. The visual feature combination pattern in the

VOTC is significantly explained by their relationships to

different types of response-action computation (fight-or-

flight, navigation, and manipulation), as derived from

behavioral ratings and natural image statistics. These

results offer a comprehensive visual feature map in the

VOTC and a plausible theoretical explanation as a mapping

onto different types of downstream response-action

systems.

Keywords Ventral occipital temporal cortex � Computa-

tional vision model � Domain organization � Response
mapping

Introduction

The ventral occipital-temporal cortex (VOTC), which

underlies visual object recognition in humans and nonhu-

https://doi.org/10.1007/s12264-021-00734-4
https://doi.org/10.1007/s12264-021-00734-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s12264-021-00734-4&amp;domain=pdf
https://doi.org/10.1007/s12264-021-00734-4
www.springer.com/12264


monkey and human [19–21] and a more anterior medial

patch in the macaque brain showed both a yellow/red

preference and face/body preference [21]. These studies

focused on individual visual features, and it is unknown

whether the specific effects of features are driven by other

features that are correlated with them in various object

contexts. Furthermore, the extent to which a single feature

can explain the observed VOTC domain distribution is

controversial [22]: the anatomical overlap between feature

effects and domain effects is far from perfect [17], and the

domain preferences are still present when visual shape is

controlled [8, 10]. Our first aim, then, was to depict a

comprehensive topographical map of visual features across

the VOTC, taking into consideration their correlational

nature in the context of common objects.

The harder question is, if there were a systematic pattern

of various visual feature sensitivity across the VOTC, what

factor drives this organization. That is, why does a certain

region prefer a particular feature or set of features together,

or why are various features preferred by the same, or

different, brain region in a particular location? Note that

‘‘domain preference’’ in the VOTC describes the phe-

nomenon and does not constitute a satisfying explanatory

variable for the potential effects of features here, because

what constitutes the ‘‘domain’’ information being repre-

sented is not explicit. A recent proposal is that the neuronal

functional preference of VOTC voxels is constrained, at

least partly, by the downstream nonvisual, response-action

computations for objects such as fight-or-flight, navigation,

and manipulation [12, 23–31]. This hypothesis predicts that

the visual feature distribution pattern in the VOTC is



Computation of Visual Feature Weights in Object

Images

The weights of 20 visual features covering a broad range of

shapes, spatial frequencies, orientations, and color proper-

ties were extracted using computational vision models for

each of 95 object images (Fig. S1). Note that the feature set

being considered was not aimed to be exhaustive or most

optimal, which was extremely difficult due to the open

nature of the feature space (e.g., see discussion in Kourtzi

and Connor, 2011 [32]). Our approach here was to borrow

the conventional relatively low-level visual features in

computational vision practice, because (1) they naturally

provide computable visual features that comprehensively

describe a visual image; (2) they offer a more parsimonious

explanation than more complex features; and (3) some of

them have been shown to modulate responses in the VOTC

(see Introduction).

Geometry/Shape Space

We examined four geometry/shape features: number of

pixels, right-angle, curvature, and elongation. For number

of pixels, a binary object mask (defined as pixels with

grayscale values\240) was created and each pixel in the

mask was counted. Overall right-angle and curvature

information was measured largely following previous

approaches with some modification [14, 17, 33]. Specifi-

cally, for right-angle, 64 right-angle Gabor filters (using an

absolute function [14]) were constructed using 4 spatial

Fig. 1 Schematic overview of

the methods in main fMRI

experiment. A Sample stimuli.

Images of 95 common objects

(32 animate items and 63 inan-

imate items, including 28 large

artifacts and 35 small manipu-

lable artifacts) were used.

B Visual feature construction

from computational vision

models. For each picture, com-

putational vision models were

used to obtain values for 20

visual features, including

geometry/shape (based on mod-

ified Gabor filters), Fourier

power features (using 2D fast

Fourier transform), color (based

on CIE L 9 C 9 H space) (see

also Fig. S1). C fMRI experi-

ment. In an event-related fMRI

experiment, participants viewed

and named these objects.

D Parametric modulation anal-

ysis. Parametric modulation was

used to estimate the degree of

association between brain

responses and visual feature

weights across the whole

VOTC.
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scales (1/5, 1/9, 1/15, and 1/27 cycles per pixel) and 16

orientations (22.5�–360� in 22.5� steps). Images were

converted to grayscale and edge maps were constructed

using Canny edge detection at a threshold of 0.1 [34]. Each

edge map was convolved with 64 Gabor filters of different

spatial scales and orientations. This produced 64 Gabor

coefficient images, which were then normalized by divid-

ing by the mean magnitude of each Gabor filter. For each

spatial scale, the largest magnitude across the 16 coeffi-

cient images of different orientations was extracted for

each pixel to obtain a peak Gabor coefficient image, which

was then averaged across all pixels of each image and

Z-scored across the image set. The resulting Gabor

coefficient values for each image were finally averaged

across 4 spatial scales and Z-scored to provide a single

value for each image to represent the amount of right-angle

information in that image. For curvature, the same

procedure was used using the bank of 320 curved Gabor

filters {using a square root function [35], composed of 4

spatial scales, 16 orientations, and 5 levels of curvature (p/
256, p/128, p/64, p/32, and p/16)}, to generate a single

value for the amount of overall curvature information for

each image. Elongation was measured as the aspect ratio of

the rectangle that enclosed the object parallel to the

object’s longest axis.

https://www.mathworks.com/matlabcentral/fileexchange/28790-colorspace-transformations
https://www.mathworks.com/matlabcentral/fileexchange/28790-colorspace-transformations
http://surfer.nmr.mgh.harvard.edu/optseq/


The order of items was randomized across runs. Each run

started and ended with 10 s of blank screen.

MRI Acquisition and Data Preprocessing

The main fMRI experiment was conducted at the Beijing

Normal University Neuroimaging Center using a 3T

Siemens Trio Tim scanner (Siemens, Erlangen, Germany).

Functional data were collected using an echo-planar

imaging sequence [33 axial slices, repetition time (TR) =

2000 ms, echo time (TE) = 30 ms, flip angle = 90�, matrix

size = 64 9 64, voxel size = 3 9 3 9 3.5 mm3 with a gap of

0.7 mm]. T1-weighted anatomical images were acquired

using a 3D MPRAGE sequence: 144 slices, TR = 2530 ms,

TE = 3.39 ms, flip angle = 7�, matrix size = 256 9 256,

voxel size = 1.33 9 1 9 1.33 mm3.

Functional images were preprocessed and analyzed

using Statistical Parametric Mapping (SPM12, http://

www.fil.ion.ucl.ac.uk/spm), Statistical Non-parametric

Permutation Testing Mapping (SnPM13, http://warwick.ac.

uk/snpm), and Data Processing & Analysis of Brain

Imaging (DPABI) [42]. The first 5 volumes in each run of

the main fMRI experiment and feature-validation experi-

ment were discarded. Image preprocessing included slice-

time correction, head-motion correction, normalization to

the Montreal Neurological Institute (MNI) space using

unified segmentation (resampling voxel size = 3 9 3 9 3

mm3 in the main fMRI experiment; 2 9 2 9 2 mm3 in the

feature-validation experiment), and spatial smoothing with

a Gaussian kernel of 6 mm full-width at half-maximum.

Three participants in the main fMRI experiment were

excluded from analyses due to excessive head motion ([3

mm maximum translation or 3� rotation).
Statistical analyses were carried out within a function-

ally defined bilateral VOTC mask (containing 3915 voxels

for 3-mm voxel size) constructed in a previous study [43],

which was defined as brain regions activated by the

contrast of all objects versus fixation in an object picture

perception task in the VOTC. Activation maps for para-

metric modulation and contrasts between conditions (see

below for details) were first created in individual partic-

ipants and then submitted to group-level random-effects

analyses using SnPM13. No variance smoothing was used

and 5,000 permutations were performed. A conventional

cluster extent-based inference threshold (voxel level at P

\0.001; cluster-level family-wise error (FWE) corrected P

\0.05 within the VOTC mask) was adopted unless stated

explicitly otherwise.

Topography of Visual Features in the VOTC

To identify brain regions associated with each feature,

parametric modulation was employed to investigate the

correlations between activity levels and feature weights

across the 95 stimulus images in the main fMRI experi-

ment. For the full model that considered the correlations

among multiple features, the variance inflation factor (VIF)

for each feature was calculated using SPSS Statistics

Software version 26 and features with a VIF [10 were

excluded from analysis to reduce multicollinearity [44].

Then the preprocessed functional images from each

participant were entered into a General Linear Model

(GLM), which included the onsets of items as one

regressor, the weights of all features for each image in

the parametric modulation module, and 6 head-motion

regressors for each run. A high-pass filter cutoff was 128 s.

Contrast images for each feature versus baseline were then

calculated and submitted for random-effects analyses.

Because there was no a priori expectation that any brain

region should become ‘‘less’’ active as the processing

demands for a given feature increased, making the

interpretation of negative correlations speculative, only

positive modulations were reported. To obtain raw feature

maps without considering correlations among features, we

also conducted parametric modulation analyses for each

feature by including one feature at a time in the GLM.

To have reference to landmarks showing well-docu-

mented object domain preferences, in the result visualiza-

tion (Fig. 2) we marked the object-domain-preferring

clusters for animals (lateral fusiform gyrus, latFG; bilat-

eral), large artifacts (PPA; bilateral), and small manipula-

ble artifacts (lateral occipital temporal cortex, LOTC; left).

A GLM that included animals, large artifacts, small

manipulable artifacts and 6 head-motion regressors was

constructed. Contrast images of each object domain with

the other two domains were calculated at the individual

level and submitted to SnPM13 for random-effects anal-

yses. The group-level activation maps obtained were

thresholded at the cluster-level, FWE-corrected P \0.05

within the VOTC mask with voxel-wise P \0.0001 for

animals and large artifacts, and voxel-wise P \0.01 for

small manipulable artifacts. The details of the identified

regions were as follows: for animal[others, the bilateral

latFG, 51 voxels; for large artifacts[others, the bilateral

PPA, 464 voxels; and for small manipulable artifacts

[others, the left LOTC, 93 voxels.

Factors Driving the Visual Feature Distribution

Patterns in VOTC Voxels

After establishing the topography of visual features in the

VOTC, here we tried to understand why visual feature

sensitivity was distributed across VOTC voxels in the

observed way. To test the feasibility of hypothesis of visual

features mapping with response actions, we first deter-

mined what type of visual feature clustering pattern is
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associated with the non-visual response-action properties

by behavioral ratings and computations of natural images.

A binary-labeled ‘‘domain’’ model was also tested as a

reference. We then tested whether the visual feature

combination patterns associated with response-action and

binary domain categorization indeed aligned with the

visual feature organization of the VOTC.

Prototypical Visual-feature Vectors for Response-actions

and Domains

To gain an unbiased understanding of the feature distribu-

tion among objects, we built a larger object image dataset

containing 672 images from three previous image sets

[45–47] and the 95 images from our main fMRI experi-

ment. We used these image sets because they had isolated

objects presented on a white background. One object image

was the same in our current experiment and in Downing

et al. [45] and thus only one of these was included. There

were 419 animals (mammals, marine creatures, birds,

insects, fish, and reptiles) and 348 inanimate man-made

artifacts (168 large artifacts and 180 small manipulable

artifacts, including buildings, furniture, appliances, com-

munal facilities, large transportation, common household

tools, kitchen utensils, and accessories). All images were

re-sized to 256 9 256 pixels with 72 dots per inch using

Adobe Photoshop CS6 (Adobe, San Jose, USA). For each

image, the feature weights were measured using compu-

tational vision models, as described above for the main

fMRI experiment stimuli.

For response-driven prototypical visual-feature vectors,

we examined three theorized response-action systems:

Fig. 2 Object visual feature

topography in a full-model

parametric modulation analysis.

All visual feature weights were

entered into the parametric

modulation model for BOLD

activity estimates, yielding an

activation map for each visual

feature in the VOTC mask. The

maps are thresholded at cluster-

level FWE-corrected P\0.05

within the VOTC mask, with

voxel-wise P\0.001. The out-

lines show the object-domain-

preferring clusters for animals

(bilateral latFG), large artifacts

(bilateral PPA), and small

manipulable artifacts (left

LOTC), localized by contrasting

each object domain with the

other two domains in the main

fMRI experiment.

123

Neurosci. Bull.





Results

Twenty visual features covering a broad range of shape,

spatial frequency, orientation, and color information were

tested, and their weights were extracted for each of 95

object images using computational vision models (see

Materials and Methods and Fig. S1)

[14, 17, 33, 36, 38, 41, 52]. fMRI responses for these

images were also obtained from 26 participants, and

parametric modulation models were used to compute the

effects of visual features across VOTC voxels, taking into

consideration their inter-correlations (Fig. 1). Then an

explicit theoretical hypothesis for VOTC computation

(visual-feature for action-response mapping) was tested

for explanatory power for the VOTC visual feature

patterns. The relation between the feature effects and the

domain effects was also examined.

Computation of Visual Feature Weights in Object

Images

A set of 95 real object images (32 animate items and 63

inanimate artifacts, including 28 large artifacts and 35

small manipulable artifacts) were analyzed using compu-

tational vision models to obtain their properties for 20

visual features: in geometry/shape space these features

were right-angle, curvature, number of pixels, and elonga-

tion; in Fourier power space, high/low spatial frequencies

and four orientations (0�, 45�, 90�, and 135�); in color

space, eight hues, luminance, and chroma. The descriptive

statistics, including distribution plots for each feature

across the whole image set, as well as the mean and SD by

domains, are shown in Fig. S3. The Pearson correlations

among features are shown in Fig. S4, left panel (note this

correlation matrix was highly correlated (r = 0.84) with the

correlation matrix derived from a broader image set,

indicating adequate representativeness of the current image

sample). As often reported, we found significant differ-

ences between animate items and inanimate artifacts

(Welch t-test and FDR corrected q \0.05) across three

visual features: right-angle (t(63.41) = -3.96, P = 1.90 9

10-4), elongation (t(68.60) = -3.97, P = 1.74 9 10-4), and

135� orientation (t(39.85) = 3.12, P = 3.33 9 10-3). When

separating the inanimate objects further into large artifacts

and small manipulable artifacts, more features exhibited

significant between-domain differences (one-way ANOVA

and FDR corrected q\0.05): right-angle (F(2,92) = 6.77, P

= 0.002), number of pixels (F(2,92) = 16.37, P = 8.27 9

10-7), and elongation (F(2,92) = 15.47, P = 1.61 9 10-6) in

geometry/shape space; low spatial frequency (F(2,92) =

6.59, P = 0.002), 0� orientation (F(2,92) = 6.21, P = 0.003),

90� orientation (F(2,92) = 5.08, P = 0.008), and 135�

orientation (F(2,92) = 8.06, P = 0.001) in Fourier power

space; orange (F(2,92) = 5.11, P = 0.008) and yellow (F(2,92)

= 5.43, P = 0.006) in color space. The post hoc

comparisons across domain pairs are shown in Table S1.

Pairs of highly-correlated visual features (Pearson r[0.85)

were collapsed into one by taking the means (cyan/indigo,

r = 0.92, red/purple, r = 0.86). To reduce the chance of

multicollinearity, low spatial frequency was further

excluded from the full parametric modulation model

analysis because it had a VIF[10 [44] (VIF = 48.25; the

VIFs of other features were within the range 1.26–5.41).

Thus, 17 features were retained the subsequent parametric

modulation analysis, with pairwise correlations in the range

-0.56 to 0.64.

Topographic Map of Visual Features in the VOTC

For all the fMRI results below, we adopted a threshold of

cluster-level FWE corrected P \0.05 within the VOTC

mask [43], with voxel-wise P \0.001 unless explicitly

stated otherwise.

The results of the full model analysis, where the 17

visual feature weights were entered into the parametric

modulation model for BOLD (blood-oxygen-level-depen-

dent) activity estimates, are shown in Fig. 2. In the higher-

order VOTC, for geometry/shape-space features, right-

angle modulated responses in the bilateral medial fusiform

gyrus (medFG) and left LOTC; number of pixels modu-

lated responses in the left medFG. For Fourier-power-space

features, high spatial frequency modulated responses in the

bilateral medFG; 0� orientation modulated responses in the

right medFG and bilateral LOTC; oblique orientations (45�
and 135�) modulated responses in the right latFG and 135�
orientation additionally modulated responses in the left

latFG. For color-space features, red/purple and green

modulated broad regions in the bilateral FG; red/purple

additionally modulated responses in the left LOTC;

luminance modulated responses in the bilateral latFG.

Independent models, in which each feature was entered

into the parametric modulation model separately without

considering the correlations among features, were also used

and are shown in Fig. S5. Here, more commonalities across

features were found, most features showing regions largely

consistent with those obtained in the full model above with

effects covering broader regions in the higher-order VOTC.

Five features showed differences between the two analyses:

The effects of elongation (in the left LOTC), 90� orien-

tation (in the bilateral medFG), and blue (in the bilateral

medFG) were significant in the independent model but not

in the full model, while the effects of 0� orientation (in the

bilateral LOTC) and luminance (in the bilateral latFG)

were significant in the full model but not in the independent
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Fig. 3 Relationship between the response-driven model and the visual

feature topography of the VOTC. A Construction scheme of proto-

typical visual-feature vectors for the three response-action systems. In

an image set of 767 images, visual feature weights for each image were

obtained using computational vision models. We examined 3 theorized

response systems (fight-or-flight, navigation, and manipulation) by

asking 24 participants to rate how strongly each object is associated

with each of the three response-action systems. Linear regressions

were conducted between each response vector and each visual feature

weight, resulting in 3 response-feature beta vectors. B Left panels,

‘‘prototypical’’ visual feature vectors associated with each response-

action system (fight-or-flight, navigation, and manipulation). Dots

indicate that beta values were significant at FDR-corrected q\0.05 for

54 comparisons. Middle panels, Pearson correlation maps between

each of these ‘‘prototypical’’ response-driven-feature vectors and the

neural-feature vectors of VOTC voxels obtained from the fMRI

parametric modulation analyses. The correlation maps are thresholded

at cluster-level FWE-corrected P\0.05, voxel-wise P\0.001 for the

navigation-driven and manipulation-driven vectors, and voxel-wise P
\0.01, cluster size[10 for the fight/flight-driven vector. Scatter plots

show the correlations for the peak voxels. Right panels, peak neural-

feature vectors of voxels.
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significantly correlated with the neural-feature vector of the

VOTC voxels in one cluster located in the right lateral

occipital cortex. The inanimate-domain-feature vector was

significantly correlated with the neural-feature vector of the

VOTC voxels in three clusters located in the bilateral

medFG and left LOTC. These results suggest that the

feature-sensitivity patterns of VOTC voxels are associated

with the natural image statistics of two major object

domains.

Comparison of Response-driven and Animacy-domain-

driven Hypotheses

We directly compared the explanatory power of these two

types of feature vector to see if, by being more specific, the

response-driven model captures finer properties of the

VOTC visual feature topography. To do this, we first

generated a response-driven maximum r map by selecting

the highest r value for each voxel out of the three response-

driven r maps shown in Fig. 3B, and generated the

animacy-domain-driven maximum r map in the same way

using the two maps shown in Fig. S6. Then the two max

r maps were Fisher-Z transformed and compared using the

paired t-test. The results showed that the response-driven

map had significantly higher r-values than the animacy-

domain-driven map (global mean r ± SD: 0.57 ± 0.27 vs

0.39 ± 0.23, t(3914) = 34.87, P = 2.87 9 10-232). The same

analysis was performed within the higher-order VOTC

(region anterior to y = -71 on the MNI coordinates in the

VOTC mask [49]) and the results were similar (global

mean of r ± SD: 0.58 ± 0.33 vs 0.37 ± 0.24, t(2120) =

25.54, P = 1.14 9 10-125).

Inanimate artifacts have been further divided into large

artifacts and small manipulable artifacts in recent studies

that showed a tripartite structure of large artifacts, animals,

and small manipulable artifacts in the VOTC, spanning

from the medial fusiform/parahippocampal gyrus to the

LOTC [4, 43, 50]. We also tested whether the response-

driven model has greater explanatory power than the

tripartite-domain-driven model because they strongly cor-

respond (fight-or-flight responses with animals; navigation

with large artifacts; and manipulation with small manip-

ulable artifacts). Procedures similar to the previous analysis

were repeated and the results showed that the response-

driven map still had significantly higher r values than the

tripartite-domain-driven map (mean ± SD: 0.57 ± 0.27 vs

0.54 ± 0.28, t(3914) = 12.21, P = 1.07 9 10-33; see Fig. S7

for results of prototypical tripartite-domain-feature vectors

and correlation maps). When the analysis was restricted in

the higher-order VOTC, the results also held: mean ± SD:

0.58 ± 0.33 vs 0.57 ± 0.33, t(2120) = 3.02, P = 0.003.

Association Between Visual Feature Effects and Do-

main Effects in the VOTC

Having established the topography of visual features in the

VOTC and tested the driving variables for such distribu-

tions, here we assessed to what extent the well-established

object-domain observations (i.e., animacy and size) can be

accounted for by the underlying feature representations.

A multiple linear regression model was constructed to

predict a voxel’s selectivity strength for object domains

(obtained from an independent fMRI dataset) using its

visual feature sensitivity patterns, across all VOTC voxels.

That is, the 17-feature sensitivity maps in the VOTC from

the full parametric modulation model were taken as the

independent variables. The dependent variable was the

VOTC animacy-domain-selectivity strength map obtained

from an independent dataset (contrasting animate items

with inanimate items; see details in [50, 51]). The results

(Fig. 4A) showed high explanatory power of the linear

regression model: adjusted-R2 = 0.815. Using the animacy-

domain-selectivity strength map computed from the main

fMRI experimental data with the identical contrast (i.e.,

within-subject analysis) yielded an adjusted-R2 of 0.959.

To predict the tripartite-structure (animals, large arti-

facts, small manipulable artifacts), the dependent variable

was obtained by contrasting the beta values of each domain

with the mean of the other two. Again, using the

independent dataset, a voxel’s visual feature vector highly

significantly predicted its selectivity strength (Fig. 4B) for

animals (adjusted-R2 = 0.816), for large artifacts (adjusted-

R2 = 0.772), and for small manipulable artifacts (adjusted-

R2 = 0.694). The results were higher using data from the

same main fMRI experiment (for animals, adjusted-R2 =

0.957; for large artifacts selectivity, adjusted-R2 = 0.946;

for small manipulable artifacts selectivity, adjusted-R2 =

0.973). When the analysis was restricted to the higher-

order VOTC, all results remained similar (see adjusted-R2

in Table S3).

Discussion

Combining computational vision models, a parametric

modulation analysis of fMRI data, and natural image

statistics, we depicted the distributional topography of a

comprehensive set of visual features (geometry/shape,

Fourier power, and color) in the VOTC, identifying the

sensitivities of voxels to specific feature sets. We demon-

strated that the relationship with salient response actions in

the real world offers one possible explanation of why

visual features are distributed this way in the VOTC.

In contrast to recent studies that focused on one or two

specific visual features or unarticulated deep neural
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network-derived hidden spaces [13, 53], our approach

tested a much more comprehensive set of visual features

and the correlations among them, and showed highly

significant explanatory power for the well-documented

object domain structure. Previous studies have shown

associations between certain visual features and domain

preferences: A preference for rectilinearity, high spatial

frequency, and cardinal orientation features has been

reported in regions preferring scenes/large objects

[14, 36, 37, 54] and a preference for high curvature, low

spatial frequency, and red/yellow hues in regions preferring

faces [17, 21, 36, 55]. However, these visual features do

not explain the domain observations satisfactorily, in terms

of the selectivity strengths [22], the anatomical overlap

[17], and the domain preference effects that are still present

when visual shape is controlled [10]. Here, by incorporat-

ing the combinational effects of multiple visual features

together, we showed remarkably high explanatory power of

Fig. 4 The association between visual feature topography and object

domain effects. A Result of using visual feature vectors of the VOTC

to predict animacy-domain selectivity: a multiple linear regression

model was constructed to predict domain selectivity strength for

animate/inanimate domains, using the beta values of 17 visual

features as predictors, across all VOTC voxels. The brain map is the

unthresholded animate vs inanimate activation map, showing the

group-averaged selectivity strength (beta values of animate items –

inanimate items for all VOTC voxels). The scatter plot shows the

correlation between predicted animacy-domain-selectivity strength

using VOTC visual-feature maps and the observed domain-selectivity

strength across all VOTC voxels. B Results of using visual feature

vectors to predict the tripartite-domain structure: three multiple linear

regression models were constructed to predict domain-selectivity

strength for animals, large artifacts, or small manipulable artifacts,

using the beta values of 17 visual features as predictors, across all

VOTC voxels. The brain maps are the unthresholded activation maps

for animals, large artifacts, or small manipulable artifacts, showing

the group-averaged selectivity strength (beta values of one domain –

those of the other two) for all VOTC voxels. The scatter plots show

correlations between predicted domain-selectivity strength using

VOTC visual-feature maps and the observed domain-selectivity

strength across all VOTC voxels.
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visual features for domain-preference: the visual-feature-

preference vectors of voxels accounted for [80% of the

variance in the selectivity of the VOTC for the animate/

inanimate domain selectivity, and[69% of the variance in

selectivity for animals, large artifacts or small manipulable

artifacts. Our results not only provide a computational

model that theoretically may predict the VOTC neural

activity pattern for objects based on their visual feature

properties, including those along fuzzy domain boundaries,

but also offer positive evidence for a plausible, specific

representation theory of the VOTC that can explain the

domain-like phenomenon what the VOTC represents (at

least) is visual features.

Why does the VOTC have this specific type of visual

feature topography then? We provided evidence that is

consistent with the recent proposal that the neuronal

functionality of VOTC voxels is constrained, at least

partly, by the association pattern with downstream nonvi-

sual, action computations such as fight-or-flight, naviga-

tion, and manipulation [12, 23–31]. Prototypical visual

feature sets that were associated with the three types of

response actions, obtained through rating and natural image

statistics, indeed aligned with the preferred visual feature

combination patterns in different patches of the VOTC: the

fight/flight-response vector (the 3 highest loadings were in

yellow, 45� orientation, and 90� orientation; and the 3

lowest loadings were in right-angle, 0� orientation, and

blue) was associated with the right latFG, bilateral lateral

occipital cortex and bilateral occipital pole; the navigation-

response vector (the 3 highest loadings in 0� orientation,

number of pixels, and right-angle; and the 3 lowest

loadings in elongation, 135� orientation, and 45� orienta-

tion) was associated with the bilateral medFG, left middle

occipital gyrus, and right lingual gyrus; and the manipu-

lation-response vector (the 3 highest loadings in elonga-

tion, chroma, and luminance; and the 3 lowest loadings in

number of pixels, 90� orientation, and low spatial fre-

quency) with the left LOTC and left lingual gyrus. That is,

how sensitivity to visual features is organized in VOTC

neurons is aligned with how visual features map with

down-stream action responses. Those visual features (com-

binations) that tend to indicate and be associated with a

certain action response (e.g., manipulation) are preferen-

tially processed and represented, together, in regions that

are optimally connected with the corresponding action

systems [12, 23–31].

It should be emphasized that we interpret our results as

showing that the representation in the VOTC is of visual

features, organized in a way that allows them to optimize

mapping with (i.e., driven by) the response-action pro-

grams, and not the action programs themselves. This is in

line with the vast literature demonstrating that the VOTC is

important for visual processing and that damaging dorsal

regions, and not the VOTC, leads to action deficits. Also

worth noting is that these response models are clearly

associated with the object domains that have been used to

label the VOTC selectivity [2, 4]: fight/fight responses with

animals; navigation responses with large objects; and

manipulation responses with small objects. We treat this

‘‘domain’’ structure as a result to be explained rather than

an explanatory theory, because it is descriptive, vaguely

defined, and does not offer a hypothesis about exactly what

information is represented here. The ‘‘visual-feature-

driven-by-action-mapping’’ account not only explains this

result, but also makes predictions that are consistent with a

series of results comparing the feature vs domain effects in

the literature: objects that do not have the prototypical

shape of a domain (e.g., a cup shaped like a cow) are

processed by the VOTC more similarly to items sharing its

surface shape (e.g., animal in this case) and not to those in

the same domain (regular cups) [56]; the animate-prefer-

ring areas are modulated by how ‘‘typical’’ (human-like)

animals are [57]; features without domain contexts may

still be able to produce effects [14, 17, 37]. Our supple-

mentary analyses of the main fMRI experiment and

analyses of the feature-validation fMRI experiment pro-

vided further support for this last point (Figs S8, S9): The

feature effects were largely present when regressing out

domain structure; The effect of right-angle in the bilateral

medFG (aligned with the PPA) was present when the

features were shown in isolation without object contexts

and/or other features, and even during the presentation of

objects from non-preferred domains (i.e., when objects

were small manipulable artifacts or animals). Interestingly,

the effects of other features such as hue and orientation

were only found when presented within objects, and

disappeared when shown in isolation, indicating that they

are processed in combination with other visual features

and/or object contexts in the VOTC [19].

There are two caveats to consider. One is that the visual

features we tested were based on knowledge and algo-

rithms from computational vision practice and the rela-

tively low-level visual features that have been considered

in VOTC research. There is always a possibility that other

relevant types of visual feature were missed, and that the

algorithm choice was not optimal. For instance, the current

curvature computation considers 5 arbitrarily-selected

concavity features, and its effects on the VOTC based on

this computation were not significant yet were visible when

using a direct contrast (top 25% amount of curvature – top

25% amount of right-angle; Fig. S10), more in line with

studies using subjective curvature ratings, which may

reflect a composite index of various types of curvature [13].

There are almost infinite potential (unarticulated) mid-level

or high-level visual features (e.g., see discussion in Kourtzi

and Connor, 2011 [32]) that are untested, such as circles,
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texture patterns, or eye-like or mouth-like patterns [58, 59].

In this context, the deep convolutional neural network

(DCNN), in which the features extracted by various layers

have been well studied and visualized in the computer

vision field, offers a special opportunity. In a typical multi-

layer DCNN (for instance, AlexNet), the first or second

convolution layers might extract some simple edge/line

features of various orientations and scales, while the

third/fourth/fifth convolution layers model more compli-

cated visual features, such as corners, circles/ellipses, or

even sub-components shared by many objects [60]. These

features are promising candidates for future studies.

Importantly, however, our result that the feature combina-

tion model highly significantly predicts the domain-pref-

erence strength in VOTC voxels indicates the power of the

included features. Furthermore, the theoretical framework

we developed based on the principle of observed feature

organization (i.e., response-constraint) may lead to a more

productive approach to identifying effective features (e.g.,

specific features that may be associated with a particular

response), and constrain the type of DCNN model to be

adopted (e.g., training for object classification or

responses). Another caveat is that we only examined the

major common objects domains, and did not test other

classical domains for the VOTC: scenes and faces. The

current framework makes the same predictions about

preferences for these two types of images, which remain

to be empirically tested.

To conclude, we found that there are systematic patterns

of various visual feature sensitivity across the VOTC,

offering a comprehensive visual feature topography map.

Such visual feature topography is aligned with how

features map onto different types of response actions.

The object-domain-related results can be largely explained

by voxel sensitivity patterns to the visual features. These
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