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morphometry by aggregating the largest multisite structural magnetic
resonance imaging (MRI) dataset to date (101,457 individuals from
115 days after conception to 100 years of age), marking an important
step toward reproducible and generalizable brain charts. However, the
normative growth charts of the functional brain connectome across
the human lifespan remain unknown.

Previous studies using task-free functional MRI (fMRI) data have
reported age-related characteristics of the functional connectome*.
However, most of these studies were limited to specific periods of growth
with narrowage intervals. Forexample, datafromthe perinatal and early
postnatal period (forexample, 0-6 years) arerarely included in studies
spanning childhood, adolescence and adulthood; thus, studies are
missing the opportunity to depictacontinuous life-cycle dynamicevolu-
tion from gestation to old age. Although a few studies have attempted
toinclude a broader age range from childhood to late adulthood, they
have suffered from challenges in robustly estimating normative growth
curvesdueto limited samplesizes (typically <1,000)*~*°. More recently,
Rf4nooretal.s

for each participant (4,609 vertices in total). We then constructed a
vertex-wise 4,609 x 4,609 functional connectome matrix by calcu-
lating Pearson’s correlation coefficient between the time courses of
each vertex. Figure 1b shows the functional connectome matrices
of representative participants at different ages. Next, we examined
the individual connectome at the global, system and vertex levels. In
accordance with the World Health Organization recommendation?, the
age-related nonlinear growth patterns were described using the gener-
alized additive model for location, scale and shape (GAMLSS)**?°, based
on cross-sectional data from healthy populations (N = 33,250). Sexand
in-scanner head motion (mean framewise displacement (FD)) were
included as fixed-effect covariates, and the scanner site was included
as arandom-effect covariate. GAMLSS provides a robust framework
for modeling nonlinear growth curves and has been widely used in
neurodevelopmental studies'®. To assess the rate of growth (velocity)
and inflection points, we calculated the first derivatives of the lifespan
growth curves. The GAMLSS specifications, model estimations and
model evaluations are detailed in the Methods.

Lifespan growth of global functional connectome

To provide basic developmental and aging insights into the global
functional connectome, we first characterized the normative growth
patterns of the global mean and variance (estimated by standard devia-
tion) of the functional connectome. The lifespan curve of the global
mean of functional connectome (Fig. 1c) exhibited anonlinear increase
from 32 postmenstrual weeks onward, peaking in the late fourth decade
of life (38.0 years, 95% bootstrap confidence interval (Cl) 35.8—39.9),
followed by anonlinear decline. This growth curve is primarily driven
by age-related changes of middle-range and long-range connections
(Extended DataFig. 1). The global variance of functional connectome
(Fig. 1d) also exhibited a nonlinear growth pattern, reaching its peak
inthe late third decade of life (28.0 years, 95% bootstrap Cl 26.1-29.9).
The utilization of the GAMLSS enabled the delineation of normative
growth curves for interindividual variability in the two global meas-
ures (Extended Data Fig. 2a and Supplementary Result 1). The curves
demonstrated aslightdeclineininterindividual variability during the
initial stages of early development, agradual increase until the late sixth
decade of life (peaking at 55.0 years, 95% CI| 53.7-55.8 for the global
mean; peaking at 56.6 years, 95% Cl 54.9-57.9 for the global variance)
and thenarapid decline. These nonlinear growth patternsin the global
connectome measures indicated a temporally coordinated manner
across the lifespan.

Lifespan growth of system-specific connectome organization
Functional segregation and integration are two fundamental organiza-
tional principles of the human brain connectome?. To understand the
lifespan growth patterns of functional segregation and integration, we
established the normative models of the functional connectome at the
systems level. The first step was to perform parcellation of the cortex
into distinct functional systems for each participant. Converging evi-
dence has shown that relying on population-level atlases for individual
analysis overlooks crucial intersubject variability in functional topog-
raphy organization®-*, This oversight leads to the misinterpretation
of spatial distribution differences as system-level disparities®, thereby
increasing the risk of inaccuracies in mapping both intra-system and
inter-system connectivity. Moreover, although previous studies of
fetal and infant brains have elucidated the early emergence of basic
forms of large-scale functional systems, including the visual (VIS),
somatomotor (SM), dorsal attention (DA), ventral attention (VA),
FP and DM networks***, the functional architecture of an individual’s
system undergoes dramatic refinement and reorganization over the
protracted life course. To increase the precision of the construction of
individual-specific functional networks, itis essential to establish aset
of continuous growth atlases with accurate system correspondences
across the entire lifespan.
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Toaddress thisissue, we proposed a Gaussian-weighted iterative
age-specific group atlas (GIAGA) generation approach (Methods and
Supplementary Fig. 4a). Theiterative refinement processis central to
this approach. Briefly, we first divided all participants aged 32 weeks
of postmenstrual age to 80 years into 26 distinct age groups. Yeo'’s
adultatlas® was then used asa prior to generate a personalized parcel-
lation for each participant in a given age group. These personalized
parcellations were further aggregated to construct an age-specific
population-level atlas, where the contribution of participants was
weighted according to their age position within a Gaussian proba-
bility distribution. This process was repeated until the age-specific
population-level atlas converged, resulting inaset of age-specificbrain
atlases across the lifespan (Fig. 2a and Supplementary Figs. 5 and 6).
Validation analysis revealed greater global homogeneity when using
these age-specific group atlases than using the adult-based group atlas
across all age groups (all P <107°, two-sided, Bonferroni-corrected;
Extended Data Fig. 3 and Supplementary Fig. 7), particularly evident
during early development. Notably, parcellation of each of the 26
brain atlasesinto seven canonical functional networkswas performed.
For each network, we calculated the network size ratio, measured by

the proportion of vertices, and the distribution score, defined by the
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system level, we observed that both the VISand SM networks exhibited
adult-like patterns (80% similarity) in the perinatal period, whereas
the DM, FP, DA and VA networks developed adult-like patterns (80%
similarity) at 4—6 years of age (Fig. 2d,e).

Based on the age-specific group atlases established above, we pro-
ceeded tomap individual-level functional systems for each participant.
Specifically, we used an iterative parcellation procedure (Methods
and Supplementary Fig. 4b), as proposed by Wang et al.*°, which has
been demonstrated to accurately identify personalized functional
networksin both healthy® and diseased™ individuals. As expected, the
individual-level atlases exhibited significantly greater global homoge-
neity than both the age-specific group atlases (all P < 1078, two-sided,
Bonferroni-corrected) and the adult-based group atlas (all P <107°,
two-sided, Bonferroni-corrected), regardless of the age groups con-
sidered (Extended Data Fig. 3 and Supplementary Fig. 7). Consistent
with the growth pattern observed in the age-specific group atlases
(Fig. 2c), the global similarity of the individualized atlas to the reference
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increased from 32 postmenstrual weeks and reached a peak in adult-
hood (31.4 years, 95% bootstrap Cl 30.3-32.7; Fig. 2f,g).

Using the person-specific network mapping approach, whichinte-
gratesindividual-level iterative processeswith the age-specific group
atlases, we characterized the lifespan growth patterns of within-system
connectivity (functional segregation) and between-system connectiv-
ity (functional integration; Extended DataFig. 5, Supplementary Result2
and Supplementary Fig. 8). To further quantify the differences in
within-system connectivity relative to between-system connectivity,
we calculated the system segregation index for each brain system®’.
This index measures the difference between mean within-system
connectivity and mean between-system connectivity as a propor-
tion of mean within-system connectivity®” (Methods). Interestingly,
global segregation across all systems peaked in the third decade of
life (25.5 years, 95% bootstrap Cl 24.6-26.6; Fig. 3a). At the system
level, different networks manifested distinct nonlinear growth pat-
terns (Fig. 3b—d). The primary VIS network consistently showed the
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greatest segregation across all ages (Fig. 3b,c), suggesting that the
VIS network is more functionally specialized and relatively less inte-
grated in inter-network communication compared to other systems.
The DA and VIS networks exhibited similar trends in life-cycle growth
patterns, peaking in early childhood and preadolescence, respec-
tively (Fig. 3b,c). The DM and FP networks showed the lowest levels
of segregation in the early stages of neurodevelopment (Fig. 3b,c).
However, segregation increased rapidly with age peaks at the end of
the third decade and decreased rapidly in the late stages of senescence
(Fig. 3b—d). Finally, the SM and VA networks showed similar growth
patterns of system segregation, increasing and decreasing moderately
over the lifetime (Fig. 3b—d).

Lifespan growth of functional connectome at the regional level
Having identified distinct growth patterns in different brain systems,
we further explored the more nuanced spatiotemporal growth patterns
of the functional connectome at the regional level. First, we plotted
the normative growth curves of each vertex’s functional connectivity
strength (FCS) by calculating the average connectivity with all other
vertices. Figure 4ashows the curves for several vertices located in dif-
ferentbrainregions, and Fig. 4b shows the fitted FCSand itsgrowth rate
across the cortex. Notably, the most pronounced changesin functional
connectivity at the regional level occurred within the first decade of
life. We then sought to elucidate how the overall growth patternsvaried

Growth rate (per year) 0

spatially across the cortex by mapping the primary spatial axis of FCS
development. To thisend, we used a principal componentanalysison
the zero-centered 50th centiles of the growth curves. The first principal
component, accounting for 60.4% of the variance, was identified as
the dominantaxis of regional functional connectivity growth (Fig. 4c).
This axis captured a hierarchical spatial transition, starting from pri-
mary sensorimotor and visual corticesand culminatingin higher-order
association regions, including the angular gyrus, precuneus, temporal
and prefrontal cortices. To better illustrate the spatiotemporal pat-
tern of growth curves throughout the cortex, we segmented the main
growth axis into 20 equal bins and averaged the curves for vertices
within each bin. A continuous spectrum of curves along the lifespan
axisisshowninFig. 4d.
The cortical landscape of the human brain is organized by a fun-
damental gradient known as the sensorimotor—association (S—A)
s*. This axis spans from primary cortices critical for sensory and
motor functions to advanced transmodal regions responsible for
complex cognitive and socioemotional tasks. It has been shown to
play animportant role inshaping neurodevelopmental processes® .
Here, we sought to investigate the extent towhich our defined growth
axis aligns with the classic S—A axis as formulated by Sydnor et al.*
(Fig. 4e). Using a spin-based spatial permutation test*’, we found a
significantassociation between the main growth axis and the S-Aaxis
(r=0.72, Py, <0.0001, one-sided; Fig. 4f). This finding suggests that
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the spatiotemporal growth of the functional connectome throughout
the human lifespan follows the canonical S—A organization.

Sexdifferencesin lifespan growth patterns

Itisbecomingincreasingly evident that sex differences exertanimpor-
tant influence on brain development and aging™®**. In GAMLSS mod-
eling, we included a sex effect as an additional variable to establish
lifespan normative growth curves. We characterized the sex-stratified
growth curvesand interindividual variability curves of the functional
connectome (Extended DataFig. 6, Supplementary Result 3 and Sup-
plementary Fig. 9). Specifically, we observed that the global mean of
the functional connectome was significantly greater in males thanin
females (false discovery rate-corrected P value (Prz) = 0.0002), thereby
confirming and extending conclusions from previous studies’“®. Con-
versely, the global variance of the connectome was greater in females
than in males (P = 0.0009). Furthermore, females showed greater
global system segregation (Pqpr < 1072%) and system-specific segre-
gation in the VIS, VA, FP and DM networks (all Prpg < 0.01) but lower
system-specific segregation in the SM and limbic (LIM) networks (all
Pror < 107%) than males. At the regional level, the lateral and medial
parietal cortex and lateral prefrontal cortex showed greater FCSin
females, whereas the sensorimotor cortex, medial prefrontal cortex
and superior temporal gyrus showed greater FCSin males (Pgpz < 0.05).
These results are compatible with a previous study using seed-based
and independent component analysis-based functional connectivity
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exhibited a high degree of correlations with those shown in the main
results (r = 0.97-1.0 for global mean of the connectome; r=0.98-1.0
for global variance of the connectome; r = 0.99-1.0 for global system
segregation; r =0.98-1.0 for system segregation of VIS, DA, VA, FP and
DM networks; r = 0.91-1.0 for system segregation of SM networks;
r=0.8-1.0 for system segregation of LIM networks, exceptforr=0.51
ofthe balanced resampling analysis; all Pz < 107°%). At the regional level,
the lifespan growth axes in the sensitivity analyses were highly spa-
tially associated with those shown in the main results (all r = 0.94-1.0,
Pspin < 0.0001). Similar results for the growth rates are shown in Sup-
plementary Table 6. We observed consistent results when the sampling
was obtained with 6-monthintervals (160 points) and monthly intervals
(1,000 points; Supplementary Tables 7-10).

Discussion

Using a large multimodal structural and task-free fMRI dataset from
33,250 individuals at 32 weeks of postmenstrual age to 80 years, we
mapped the growth patterns of the functional connectome across the
human lifespan at the global, system and regional levels. We charted
the multiscale, nonlinear growth curves of the functional connectome
and revealed previously unidentified key growth milestones. To provide
a lifespan characterization of functional brain systems, we created
age-specific atlases spanning 32 postmenstrual weeks to 80 years of
agetoserveasafoundational resource for future research. Collectively,
the connectome-based growth charts highlight the lifespan evolu-
tion patterns of human brain functional networks, thereby providing
normative referencesto quantify individual variation indevelopment,
aging and brain disorders.

Atthe global level, we observed continuous nonlinear changesin
the global mean and variance of functional connectivity across the life
cycle, peaking in the late fourth and late third decades, respectively.
Similarly, the growth curve of global brain structure shows a pattern of
increase followed by decline, albeit peaking earlier’. Taken together,
these functional and anatomical findings suggest that the human brain
remains in a state of dynamic adaptation throughout the lifespan. At
the systemslevel, anintriguing observationis that the DM and FP net-
works, relative to other networks, undergo more rapid development of
system segregation during infancy, childhood and adolescence, peak
later and decline precipitously during aging. The accelerated early
developmentof these networks can be attributed to theirinitially less
organized functional architecture in utero and the subsequent need for
rapid postnatal development to support the emergence and develop-
ment of advanced cognitive functions***“¢, Moreover, the increased
susceptibility of these networks to accelerated decline during aging
may be exacerbated by their increased sensitivity to environmental,
geneticand lifestyle factors, aswell as neurodegenerative agents such
as amyloid-B and tau®. At the regional level, our results validate and
extend the replicable findings of Luo and colleagues®, who, using four
independent datasets, observedanincrease in FCSin primary regions
andadecrease in higher-order regions from childhood to adolescence.
Furthermore, the life-cycle growth curves of regional FCS are con-
strained by their positions along the S—A axis, highlighting the role of
the S—A axis as a key organizational principle that influences cortical
developmentand aging®.

A promising avenue to explore for future research is the interac-
tionbetween lifespan growth curves of brain networks under different
modalities. This interaction could be investigated by examining how
different structural and functional connectivity metrics coevolve
across the lifespan and whether there are similar or variable tempo-
ral key points within these curves. It would be valuable to determine
whether milestones of the structural connectome precede those of
the functional connectome, thereby providing an anatomical scaf-
fold for the dynamic maturation of functional communication. Fur-
thermore, identifying the critical physiological factors that shape
growth patternsacross the lifespanisacomplex but essential endeavor.

Recent evidence suggests that population-based life-cycle trajec-
tories of cortical thickness align with patterns of molecular and cel-
lular organization, with varying degrees of biological explanation at
different life stages™. A genome-wide association meta-analysis by
Brouwer etal.” identified common genetic variants thatinfluence the
growth rates in cortical morphology development or atrophy across
thelifespan. These findings underscore the necessity of amultifaceted
approach encompassing anatomical, genetic, molecular and metabolic
methodologies to elucidate the complex factors that regulate typical
and atypical alterations in the human brain connectome.

Agrowing body of evidence suggests that dysfunction of the brain
networkisacritical factor in elucidating the pathogenesis of neuropsy-
chiatric disorders’. The integration of the connectomic framework
with normative growth curves would facilitate the acquisition of valu-
ableinsightsinto brain network dysfunctionin clinical populations. In
particular, the connectome-based lifespan normative models estab-
lished here enable future research to characterize the extenttowhich
functional connectomes in individuals with brain disorders deviate
fromthe norms. These connectome-based deviations are anticipated
to be clinically valuable in the identification of disease biotypes, the
establishment of brain—symptom relationships and the prediction of
treatment outcomes.

A number of challenges warrant further consideration. First, the
data used to delineate lifespan growth patterns in the current study
were aggregated from existing neuroimaging datasets, which are dis-
proportionately derived from European, North American, Asian and
Australian populations. This geographic bias has also been found in
other neuroimaging normative references or big datastudies, such as
those involving cortical morphology growth maps'® and genome-wide
association studies of brain structure across the lifespan®. Future
research should include more neuroimaging cohortstudies designed
toachieve abalanced representation of diverse ethnic populations®. In
addition, itiscritical to consider the diversity of environmental factors,
such as socioeconomic status, education level, industrialization and
regional culture, which pose potential challenges to the application
of lifespan trajectories. Second, as previously outlined by Bethlehem
etal.”°, we also encountered challenges related to the uneven age distri-
bution of the neuroimaging sample, particularly with the underrepre-
sentation of the infantand middle-aged (30—40 years) populations. It
isevident that functional changesin the uterus are dramatic; however,
the paucity of available fetal fMRI data limits our understanding of
this critical period. Future research should complement the current
modelswith more neuroimaging data, especially from the fetal stages.
Third, the presence of artifacts and low signal-to-noise ratios in fMRI
images of the orbitofrontal cortex, partly due to head movementand
magnetic field inhomogeneity, represents a substantial challenge®.
The development of advanced imaging techniques and algorithms
will be crucial for addressing thisissue. Fourth, adjusting for multisite
effects in retrospective data represents another notable challenge.
Studies have shown thatincorporatingsite variables as random effects
inmodels, rather than the use of ComBat, isamore effective approach
in normative modeling'®**. Therefore, we adopted a conservative
analytical approach by modeling site effects as random effects (for a
comparison of results using different methods, see Supplementary
Result4 and Supplementary Fig. 15). Future research may benefit from
integrating prospective cohort designs, phantom scans and scans of
traveling individuals. Fifth, due to the ambiguity in interpreting nega-
tive functional connectivity, we focused on positive connectivity in
our main results. Nonetheless, we also analyzed the normative growth
patterns of negative connectivity across the lifespan at global, system
and regional levels (Extended Data Fig. 8, Supplementary Result 5
and Supplementary Fig. 16). Sixth, considering the methodological
challenges of surface-based analyses in integrating cortical and sub-
cortical structures, we focused on cortical connectomes in our main
results. In light of the importance of subcortical structures, we also
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presented lifespan growth curves of subcortical connectomes using
volume-based analysis (Extended Data Fig. 9, Supplementary Result
6 and Supplementary Fig. 17). Seventh, the data used in this study are
cross-sectional, which may resultinanunderestimation of age-related
changes in the functional connectome®. Therefore, integrating more
densely collected longitudinal dataacrossall ages is essential to accu-
rately characterize lifespan trajectories. Finally, it is anticipated that
the connectome-based growth charts established here will serve as
adynamic resource. As more high-quality, multimodal connectome
datasets become available, the lifespan normative growth model will
be updated accordingly.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
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Methods

Datasets and participants

To delineate the normative growth of the functional connectome in
the human brain, we aggregated the available multisite neuroimaging
datasets, each containing both 3T structural and task-free fMRI data.
For participants with multiple test-retest scans, only the first session
was included. The total number ofimaging scans collected was 44,576
with 42,428 participants ranging in age from 32 postmenstrual weeks
to 80 years. These scans were obtained from 172 sites in 28 datasets.
Participant demographics and imaging scan parameters for each site
are presented in Supplementary Tables 1 and 2, respectively. Written
informed consent was obtained from participants and/or their legal
guardians, and the recruitment procedures were approved by the local
ethics committees for each dataset.

Image quality-control process

The implementation of a rigorous and standardized quality-control
procedure is essential to ensure the authenticity of neuroimaging
data, thereby enhancing the credibility of growth curves. Previous
research has shown that inadequate quality control of MRI scans can
diminish the benefits of large sample sizes in detecting meaningful
associations®. In this study, we used a comprehensive four-step data
quality-control framework that combined automated assessment
approaches and expert manual review to assess both structural and
functionalimages (Supplementary Methods and Supplementary Figs. 1
and 2). Thisrigorous framework effectively identified imaging artifacts
or errors, ensuring the accuracy and reliability of the neuroimaging
data. Applying this framework resulted in the exclusion of 9,845 scans
in 9,178 participants. The final sample comprised 33,250 healthy par-
ticipants (17,845 females, 32 postmenstrual weeks to 80 years old) with
33,250 cross-sectional and 1,481 longitudinal scans, all with high-quality
functional and structural images.

Data processing pipeline

Structural data preprocessing. Despite our efforts to use a unified
structural preprocessing pipeline across all datasets to mitigate the
impact of disparate methodologies, the substantial variations in the
structure and function of the human brain across the lifespan present
anotable challenge. Thiswas particularly evidentin the perinatal and
infant periods, where the anatomical characteristics differ markedly
fromthose of adults. For example, in 6-month-old infants, the contrast
between gray and white matter is extremely subtle, and at approxi-
mately 6 months ofage, thereisacontrastinversion betweengray and
white matter. These factors greatly complicate the segmentation of
brain tissue during this period®®®. In the absence of a preprocessing
pipeline suitable for all stages of life, itisnecessary to find appropriate
methods for early developmental datasets while ensuring the uniform-
ity of the pipelinesin other datasets.

The structural images of all participants underwent brain extrac-
tion, tissue segmentation and cortical surface reconstruction. For
individuals aged 2 years and older, we utilized the publicly available,
containerized Human Connectome Project (HCP) structural preproc-
essing pipelines (v4.4.0-rc-MOD-e7a6af9)®°, which have been standard-
ized through the QuNex platform (v0.93.2)®". For participants in the
postmenstrual age range of 32 to 44 weeks from the developing Human
Connectome Project (dHCP) study, we applied the officially recom-
mended dHCP structural pipelines®, which have been specifically
designed toaccount for the substantial differences between neonatal
and adult MRI data. Furthermore, we used the officially recommended
iBEAT V2.0 pipelines® for participants aged from 0-2 years (all from
the Baby Connectome Project (BCP)). The individual cortical surfaces
obtained from the dHCP and iBEAT V2.0 structural pipelines were
aligned with the adult fs_LR_32k standard space using a three-step
registration method (Supplementary Fig. 3). Asupplementary analysis
was conducted to validate the normative growth pattern of the global

functional connectome, which involved avoiding cross-age surface
registration (Supplementary Result 7 and Supplementary Fig. 18). The
detailed processing procedures are provided in the Supplementary
Methods.

Functional data preprocessing. For individualsaged 2 yearsand older,
the HCP functional preprocessing pipelines were used®°. For partici-
pantsinthe postmenstrual age range of 32 to 44 weeks from the dHCP
study, we applied the dHCP functional pipelines®. Building on the foun-
dation ofthe HCP pipeline and the FSL FEAT pipeline, this pipeline was
tailored toaddress the unique challenges associated with neonatal fMRI
data. For participants from the BCP cohort, we implemented several
HCP-style stepsto obtain preprocessed volumetric fMRI data. For each
participant, the preprocessed time courseswere then transferred from
theindividual’'s native space to the fs_LR_32k standard space usingeach
participant’s surface registration transformations from the structural
preprocessing stage. The detailed processing proceduresare provided
inthe Supplementary Methods.

Functional data post-processing. For the Adolescent Brain Cognitive
Development (ABCD) dataset, the ABCD-HCP functional pipeline used
DCANBOLDProcessing software (https://collection3165.readthedocs.
io/en/stable/pipelines/) to reduce spuriousvariance thatis unlikely to
reflect neural activity. For other datasets, the preprocessed fMRI data
were post-processed using SPM12 (v6470) and GRETNA (v2.0.0) with
auniform pipeline. Specifically, the following stepswere initially con-
ducted onthe timeseriesforeachvertexinfs_LR_32k space (59,412 ver-
ticesintotal): linear trend removal, regression of nuisance signals (24
head motion parameters, white matter signal, cerebrospinal fluid signal
and global signal) and temporal band-pass filtering (0.01-0.08 Hz).
To mitigate the effects of head motion, the motion censoring was
furtherimplemented. This process involved discarding volumes with
an FD greater than 0.5 mm and adjacent volumes (one before and two
after). Tomaintain the temporal continuity of the fMRI time series, we
subsequently filled these censored frames using a linear interpola-
tion. These interpolated data were retained in the time series before
the construction of functional connectivity matrices. Additionally,
participants with more than 20% of frames exceeding the 0.5-mm FD
threshold were excluded from our study. Surface-based smoothingwas
thenapplied using a 6-mm full-width at half-maximum kernel. Finally,
the data were resampled to a mesh of 2,562 vertices (corresponding
to the fsaverage4 standard space) for each hemisphere using the HCP
Workbench ‘metric-resample’ command. The removal of the medial
wall resulted in a combined total of 4,609 vertices exhibiting BOLD
signals on both the left and right hemisphere surfaces.

Construction of functional atlases across the lifespan

Construction of population-level age-specific atlases. Toimprove
the precise mapping of individual-specific functional networks across
the lifespan, we first developed a GIAGA generation approach (Sup-
plementary Fig. 4a) to create a set of age-specific population-level
functional atlases (Fig. 2aand Supplementary Figs.5and 6). Given the
dramatic functional changes that occur during early development®, we
prioritized the generation of finer age-specific atlases for these stages
comparedto the later life stages. To thisend, we divided all individual
scansinto 26 differentage subgroups, ranging from 32 postmenstrual
weeks to 80 years of age. Each age group consisted of cross-sectional
data only. Then, we constructed an age-specific functional atlas for
each subgroup. A total of nine atlases were constructed for the peri-
natal to early infant period, including four for perinatal development
(34-week, 36-week, 38-week and 40-week (0-year) atlases) and five for
thefirstyear of life (1-month, 3-month, 6-month, 9-monthand 12-month
atlases). Two atlases were developed for toddlers (18-month and
24-month atlases), while nine atlases were created for childhood and
adolescence (4-year, 6-year, 8-year, 10-year, 12-year, 14-year, 16-year,
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18-year and 20-year atlases). Finally, six atlases were generated for
adultsand the elderly (30-year, 40-year, 50-year, 60-year, 70-year and
80-year atlases). A total of 300 participants were randomly selected
for each age subgroup. In the event that the available sample size was
less than 300, all participants who passed the imaging quality control
wereincluded. Further details on the age range, number of participants
and sex ratio for each atlas can be found in Supplementary Table 11.

Inrecentstudies of brain functional organization, Yeo's 7-network
and 17-network atlases® have been widely used to map cortical func-
tional systems®. By including hand sensorimotor areas based onactiva-
tions in a hand motor task®, Wang and colleagues extended this
classical functional parcellation, resulting in an 18-network atlas®. In
line with previous studies®®"°, we utilized this updated classic
18-network map as the initial atlas for the construction of age-specific
group atlases. The detailed construction process for a given age sub-
group (for example, 17-19 years) was as follows. First, to enrich the
dataset for thisage subgroup, we included the latter half of the partici-
pants from the previous subgroup (15-17 years) and the earlier half of
the participants from the subsequent subgroup (19-21years). We then
used the individualized parcellation iteration algorithm proposed by
Wang and colleagues® to map the 18-network atlas to each participant,
generating theinitial individualized functional parcellations (step 1in
Supplementary Fig. 4a). We then proposed the GIAGA approach.
Aroundthe core age (thatis, 18 years) of this given group, we generated
aGaussian probability distribution N (, 02)with mean p = O and stand-
ard deviation o = 1and assigned weights to each participant based on
theirage positionin this Gaussian distribution. The weight quantified
the participant’s contribution to the population-level atlas construc-
tion, with participants closer to the core age resulting in a greater
contribution. For each vertex, we calculated the cross-participant
cumulative probability of belonging to each network and assigned
vertex labels to the network with the highest cumulative probability,
resultinginaninitial age-specific population-level atlas (step 2 in Sup-
plementaryFig. 4a). Finally, steps 1and 2 were iteratively repeated until
the overlap between the currentand previous atlases exceeded 95% or
the total number of iterations exceeded 10, indicating convergence
(step 3in Supplementary Fig. 4a).

Individualized atlas construction. For each participant, we used the
same iterative parcellation method described above to generate an
individualized functional parcellation based on the corresponding
population-level atlas specific to the participant’s subgroup (Supple-
mentary Fig. 4b). Briefly, the influence of the population-level atlas
on the individual brain varied across participants and across brain
regions; therefore, this method made flexible modifications during
the construction of the individualized atlas based on the distribution
of interindividual variability in the functional connectome and the
temporal signal-to-noise ratio (tSNR) of the functional BOLD signals.
Over the iterations, the weight of population-based information was
progressively reduced, allowing the final individualized map to be
completely driven by the individual-level BOLD data. More information
onthisiterative functional parcellation approach can be found in the
study by Wang and colleagues®.

Notably, given the potential variance of different interindividual
variability patterns and tSNR distributions across different age sub-
groups, we generated an interindividual variability map and atSNR map
foreachage subgroup. Thiswas done toimprove the accuracy of both
theindividual and population-level atlases. We divided the time-series
data of each participantwithin each age subgroup into two halves. For
each half, we computed a vertex-by-vertex functional connectome
matrix. This allowed us to obtain the interindividual variability and
the intra-individual variability within the subgroup. By regressing
the intra-individual variability from the interindividual variability,
we obtained a ‘purified’ measure of interindividual variability in the
functional connectome™",

Construction of the reference atlas used for comparison. To mitigate
the potential biasintroduced by specifying areference atlas for ‘mature
age’, we adopted a data-driven approach to construct the reference
atlas. Atlas similarity was assessed using the overlap index, which
quantifies the proportion of vertices with matching labels between
two atlases. For instance, if two atlases have 4,000 vertices with iden-
tical labels out of a total of 4,609 vertices, the overlap index would be
4,000/4,609 = 86.8%. We computed the overlap index between each
pair of the 26 atlases, resulting ina 26 x 26 similarity matrix. Hierarchi-
cal clustering was applied to this matrix (Extended Data Fig. 4a). We
selected a highly congruent cluster of atlases, including the 18-, 20-,
30-, 40-, 50-, 60- and 70-year atlases. For each vertex, we assigned
the label as the system that had the highest probability of occurrence
across these selected atlases, thereby generating the final reference
atlas (Extended DataFig. 4b).

Homogeneity of both the age-specific and personalized functional
atlases. We evaluated the functionalhomogeneity of three parcellation
atlasesatspecificage intervals: the adult-based group atlas established
by Yeo et al.*, the age-specific group atlas and the individual-specific
atlas (Extended Data Fig. 3 and Supplementary Fig. 7). For each age
interval, we performed one-way repeated-measures analysis of vari-
ance followed by post hoc multiple-comparisons tests to determine
whether the homogeneity of the individualized atlas was significantly
greater than that of the age-specific group atlasand whether the homo-
geneity of the age-specific group atlas was significantly greater than
that of the adult-based group atlas.

The homogeneity of a system was assessed by calculating the
average similarity between every pair of vertices assigned to it. The
commonly used metricis within-system homogeneity, whichis calcu-
lated as the average of Pearson’s correlation coefficients between the
time series ofall vertex pairs within each system, serving asameasure
ofinternal consistency®*. To summarize within-system homogeneity
for comparisons across atlases, we averaged the homogeneity values
across systems®. For validation, we used another commonly used met-
ric, the functional profile homogeneity, which defines system similarity
asPearson’s correlation coefficient between the ‘connectivity profiles’
ofverticeswithinasystem’®". The connectivity profile ofavertexisrep-
resented by the connections between this vertexwith all other cortical
vertices. The global average functional profile homogeneity value was
derived by averaging the homogeneity values across all systems™. The
repeated-measuresanalysis of variance revealed significant differences
inthe global average of functional homogeneity across different atlases
foranygivenage interval (all F > 255, P < 107%, two-sided; Extended Data
Fig.3and Supplementary Fig. 7). Post hoc analysis revealed significant
differences in functional homogeneity between every pair of atlases
(all P <1078, two-sided, individual-specific atlas > age-specific group
atlas > adult-based group atlas; Extended Data Fig. 3and Supplemen-
tary Fig. 7), regardless of the age groups considered.

Individualized metrics of the functional connectome

For each pair of vertices among the 4,609 vertices in the fsaverage4
space, we computed the Pearson’s correlation coefficient to char-
acterize the vertex-by-vertex functional connectivity, resulting in a
4,609 x 4,609 functional connectome matrix for each participant.
All negative FCS values were set to zero. For each participant, the
global mean of functional connectome was defined as the mean of
all 4,609 x 4,609 connections (edges), and the global variance of
functional connectome was defined as the standard deviation of all
4,609 x 4,609 connections. For validation, we also calculated the
global mean of the functional connectome by averaging only the
positive-weightedges, which yielded similar lifespan growth patterns
(Supplementary Result 8 and Supplementary Fig. 19). At a regional
level, the FCS of a given vertex was quantified as the average of the
connectionswith all other vertices.
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Foragiven brainsystem, anindividual’s within-system functional
connectivity, FC,,, was defined as the average connection strength
among all vertices within that personalized system. Conversely, the
individual’s between-system connectivity, FC,, was represented by
the average strength of connections between this system and all other
systems. System segregation® was determined by calculating the
difference between FC,, and FC,, normalized by FC,,, as described in
equation (1):

FC, — FC,

FC, M

System segregation =

Similarly, global system segregation was defined as the differ-
ence between global mean within-system connectivity and global
mean between-system connectivity, normalized by global mean
within-system connectivity.

The degree of global similarity between an individualized atlas
and the reference atlas was quantified by the overlap index. This was
defined asthe number of vertices with the same label in the two atlases
divided by the total number of vertices in both atlases. If there were
4,609 vertices with the same label in two atlases, the overlap index was
4,609/4,609 =1.0. The degree of similarity between an individualized
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kernel density estimation of the residuals showed an approximately
normal distribution, and the normal quantile-quantile plots showed
an approximately linear trend with an intercept of O and a slope of 1.
Second, we used the detrended transformed Owen'’s plots of the fitted
normalized quantile residuals to evaluate the performance of the mod-
els. This function uses Owen’s method to constructanonparametric Cl
for the true distribution. Asshown in the resulting plots (Supplemen-
tary Fig. 24), the zero horizontal line fell within the Cl, suggesting that
theresiduals followed anormal distribution.

Sex differences across the lifespan. In the GAMLSS model, sex was
included as a fixed effect to evaluate its impact on the lifespan curves
ofthe functional connectome. We obtained the pand o coefficients, as
well astheir standard errors, T values, and P values, for the sex variable
using the ‘summary’ functioninR (Supplementary Tables3and 4). The
estimated p and o coefficients represent the adjusted mean and vari-
ance effect of sex on the functional phenotype, considering control
variablessuch as age, head motion (mean FD) and the random effects
of scannersite. The T value, calculated as the coefficient divided by its
standard error, serves as a statistic to test the null hypothesis that the
coefficientis equal to zero (no effect).

Sensitivity analysis of connectome-based normative models
The lifespan normative growth patterns were validated at the global,
system and regional levels using various analysis strategies. These anal-
yses addressed key methodological concernsincluding head motion,
theimpactofunevensample andsite distributions across ages, replica-
tionusing independentsamples, model stability and potential effects
of the specific site. At the global and system levels, we quantitatively
assessed the similarity between these validated growth patterns and
the main results by sampling 80 points at one-year intervals for each
growth curve and growth rate and calculated Pearson’s correlation
coefficientbetween the corresponding curves. The samplingwas also
conducted at 6-month intervals (160 points) and monthly intervals
(1,000 points). Atthe regional level, we calculated the spatial associa-
tion between the lifespan growth axis in the sensitivity analyses and
that shown in the main results.

Analysis with stricter head motion threshold (mean FD thresh-
old <0.2mm). Previous research has indicated that head motion can
substantially impact the quality of brain imaging data™*°. To ensure
that our findings were not influenced by the potential effects of head
motion, we implemented a stricter quality-control threshold, exclud-
ing participants with a mean FD exceeding 0.2 mm, and replicated
all normative model analyses. Specifically, after excluding 8,756 par-
ticipants from the initial cohort of 33,250 participants with a 0.5-mm
mean FD threshold, we used datafrom 24,494 participants to validate
the lifespan growth curves of the functional brain connectome at the
global, system and regional levels (Supplementary Fig. 10).

Balanced resampling analysis. To address potential biases arising
fromunevensampleandsite distributionsacrossage groups, abalanced
sampling strategy was performed (SupplementaryFig. 11). Thisapproach
ensured equitable participantandsite countsacross various age groups
through random sampling. Specifically, we divided the entire age range
acrossthelifespaninto 16 age groups (each spanning5years) and then cal-
culated the number of participantsand sites for each age group. Besides
the age groups under 5 years of age or over 70 years, the 35-40-year age
group had the fewest participants at 464 and the 40-45-year age group
contained the fewestsitesat 23 (SupplementaryFig. 11). Thus, we selected
all participants from the 23 most populated sites within the 35-40-year
age group, comprising 457 participants. For otherage groups,arandom
sampling strategy wasimplemented to include 457 participantsfromthe
23 most populated sites. The resulting distribution of participants and
sitesacrossage groupsafter resamplingisshownin SupplementaryFig.11.

For global and system metrics, sampling was repeated 1,000 times
using the above procedure on a pool of 33,250 participants. For each
sampling, we randomly selected 6,770 participants and re-performed
the GAMLSS models, resulting in 1,000 sets of growth curves for each
metric. We then calculated the 95% CI for these curves, the 95% CI for
the peak of the median (50th) centile and the correlations between the
1,000 median centile lines and the median centile line derived from
the original cohort of 33,250 participants. For regional metrics (that
is, FCS), we selected a random resample and recalculated all results,
including the normative growth curves and growth rate of the regional
FCS, thelifespan growth axis and the association between the lifespan
growth axis and the S—A axis.

Split-half replication analysis. To assess model replicability in
independent datasets, a split-half strategy was conducted (Supple-
mentary Fig. 12). Participants were randomly divided into two sub-
groups, each comprising 50% of the participants (Nsypgroup: = 16,663,
Nsubgroup2 = 16,587), with stratification by site. The lifespan normative
growth patterns were independently evaluated using subgroup 1and
subgroup 2.

Bootstrap resampling analysis. To assess the robustness of the lifes-
pangrowth curvesand obtain their Cl, abootstrap resampling analysis
was performed (Supplementary Fig. 13). This involved the execution
of 1,000 bootstrap repetitions using replacement sampling. Toensure
thatthe bootstrap replicates preserved the age and sex proportionality
oftheoriginal studies, the lifespan (from 32 weeks to 80 years) was seg-
mented into ten equal intervals and stratified sampling was conducted
based on both age and sex. For each functional metric, 1,000 growth
curves were fitted, and 95% Cls were computed for both the median
(50th) centile curve and the inflection points. The 95% Cls were calcu-
lated based on the mean and standard deviation of the growth curves
and growth rates across all repetitions.

LOSO analysis. To ascertain whether the lifespan growth curves were
influenced by specificsites, the LOSO analyses were implemented (Sup-
plementaryFig. 14). Ineachinstance, the samples were removed from
onesiteatatime, the GAMLSS modelswere refitted, and the parameters
and growth curves were estimated. We initially compared the curves
obtained after excluding the largest site (site 1 from the UK Biobank
dataset, 12,877 participants) with those fitted using the entire dataset
(N =33,250). This revealed that both the growth curves and growth
rates were almost identical. The mean and standard deviation across
all repetitions were used to calculate the LOSO 95% Cls for both the nor-
mative growth curvesand growth rates. The narrow Clsindicated that
our modelswere robust when datafrom any single site were removed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Dataavailability

The MRI dataset listed in Supplementary Table 1is partly available at
the ABCD Study (https://nda.nih.gov/), the ABIDE Initiative (https:/
fcon_1000.projects.nitrc.org/indi/abide/), the ADNI (https://adni.
loni.usc.edu/), the Age_ility Project (https://www.nitrc.org/projects/
age-ility/), the BCP (https://nda.nih.gov/), the Brain Genomics Super-
struct Project (https://doi.org/10.7910/DVN/25833), the Calgary Pre-
school MRI Dataset (https://osf.io/axz5r/), the Cambridge Centre for
Ageing and Neuroscience dataset (https://www.cam-can.org/index.
php?content=dataset/), the dHCP (http://www.developingconnec-
tome.org/data-release/second-data-release/), the HCP (https://www.
humanconnectome.org/), the Lifespan Human Connectome Project
(https://nda.nih.gov/), the NKI-RS dataset (https://fcon_1000.projects.
nitrc.org/indi/pro/nki.html), the NSPN dataset (https://nspn.org.uk/),
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the Pediatric Imaging, Neurocognition, and Genetics (PING) data
repository (http://pingstudy.ucsd.edu/), the Pixar Dataset (https:/
openfmri.org/dataset/ds000228/), the Strategic Research Program for
Brain Sciences MRl Dataset (https://bicr-resource.atr.jp/srpbsopen/),
the Southwest University Adult Lifespan Dataset (http://fcon_1000.
projects.nitrc.org/indi/retro/sald.html), the Southwest University Lon-
gitudinal Imaging Multimodal Brain datarepository (http://fcon_1000.
projects.nitrc.org/indi/retro/southwestuni_qiu_index.html) and the
UK Biobank Brain Imaging Dataset (https://www.ukbiobank.ac.uk/).
The dhcpSym surface atlases in ages from 32 to 44 postmenstrual
weeks are available at https://brain-development.org/brain-atlases/
atlases-from-the-dhcp-project/cortical-surface-template/. The UNC
four-dimensional infant cortical surface atlasesare available at https://
bbm.web.unc.edu/tools/. The fs_LR_32k surface atlas is available at
https://balsa.wustl.edu/. The subcortical atlasesare available at https://
github.com/yetianmed/subcortex/. The brain charts and lifespan
developmental atlases are shared online via GitHub (https://github.
com/sunlianglong/BrainChart-FC-Lifespan/). Source dataare provided
with this paper.

Codeavailability

The codes used in this paper are available on GitHub (https://github.
com/sunlianglong/BrainChart-FC-Lifespan). Software packages
used herein include MRIQC v0.15.0 (https://github.com/nipreps/
mrigc/), QuNexv0.93.2 (https://gitlab.qunex.yale.edu/), HCP pipeline
v4.4.0-rc-MOD-e7a6af9 (https://github.com/Washington-University/
HCPpipelines/releases/), ABCD-HCP pipeline vl (https://github.
com/DCAN-Labs/abcd-hcp-pipeline/), dHCP structural pipeline
vl (https://github.com/BioMedIA/dhcp-structural-pipeline/),
dHCP functional pipeline vl (https://git.fmrib.ox.ac.uk/seanf/
dhcp-neonatal-fmri-pipeline/), iBEAT pipeline v1.0.0 (https://github.
com/iBEAT-V2/iBEAT-V2.0-Docker/), MSM v3.0 (https://github.com/
ecr05/MSM_HOCRY/), FreeSurfer v6.0.0 (https://surfer.nmr.mgh.har-
vard.edu/), FSLv6.0.5 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), Con-
nectome Workbench v1.5.0 (https://www.humanconnectome.org/
software/connectome-workbench/), MATLAB R2018b (https://www.
mathworks.com/products/matlab.html), SPM12 toolbox v6470
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), GRETNA
toolbox v2.0.0 (https://www.nitrc.org/projects/gretna/), BrainNet
Viewer toolbox v20191031 (https://www.nitrc.org/projects/bnv/),
cifti-matlab toolbox v2 (https://github.com/Washington-University/
cifti-matlab/), HFR_ai toolbox v1.0-beta-20181108 (https://
github.com/MeilingAva/Homologous-Functional-Regions//),
System segregation code (https://github.com/mychan24/
system-segregation-and-graph-tools), Python v3.8.3 (https://www.
python.org/), neuroharmonize package v2.1.0 (https://github.
com/rpomponio/neuroHarmonize/), scikit-learn package v1.1.3
(https://scikit-learn.org), R v4.2.0 (https://www.r-project.org/),
GAMLSS package v5.4-3 (https://www.gamlss.com/) and ggplot2 pack-
agev3.4.2 (https://ggplot2.tidyverse.org/).
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Extended DataFig. 1| Distance-related lifespan growth patterns of the global lines. Inthe lower panel, the growth rate of each curve is characterized by the first
connectome. Normative growth curves and growth rates of the global mean of derivative of the median centile line. The gray shaded areas represent the 95%
short-range (a), middle-range (b), and long-range (c) functional connectome. confidence interval, which were estimated by bootstrapping 1,000 times

Inthe upper panel, the median (50th) centile of each curve is represented by (see Methods for details). yr, year.

asolid line, while the 5th, 25th, 75th, and 95th centiles are indicated by dotted
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Extended DataFig. 2| Lifespan growth patternsininterindividual variability
of the functional connectome. a, Lifespan growth curves and growth rates

of interindividual variability of the global mean of the connectome (left

panel), global variance of the connectome (middle panel), and global system
segregation (right panel). b, Lifespan growth curves (showed as centile lines)

Na seNe so cience
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and growth rates (showed as the central line) of interindividual variability
system segregation in each network. The gray shaded areas represent the 95%
confidence interval, which were estimated by bootstrapping 1,000 times. VIS,
visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic;
FP, frontoparietal; DM, default mode; yr, year.
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Extended DataFig. 3| Statistical differencesin functional homogeneity
among three atlases. a, One-way repeated analysis of variance (RANOVA) of
global homogeneity for each age group. Within each age interval, for each
participant we calculated the within-system homogeneity of three parcellation
atlases, namely the adult-based group atlas, the age-specific group atlas, and
the individual-specific atlas. The within-system homogeneity was quantified
by averaging Pearson’s correlations between the time series of all vertex pairs
within each system. Given that the iterative processes for both the age-specific
group atlasand the individual-specific atlas were based on the finer 18-network
parcellation, we calculated within-system homogeneity using the 18 networks.
To summarize an overall system homogeneity, we averaged the homogeneity
values across systems. The RANOVA revealed significant differences in the global
homogeneity among three atlases for any given age group (all F> 267, p <107,

two-sided). The gray lines connect three atlases for the same participant.

b, The post hoc analyses revealed group differences (all p < 1078, two-sided,
Bonferroni-corrected) in functional homogeneity between any pairs of atlases.
The bars for each age group represent the mean difference in global homogeneity
between two atlases for all participants in that group. Notably, for the 14 age
intervals from 32 postmenstrual weeks to 7 years and from 75 to 80 years, the
number of participantsincluded in each interval was fewer than 300. Therefore,
all these participants were involved in the construction of the age-specific group
atlases (Supplementary Table 11). For the 12 age intervals from 7 to 70 years, the
number of participantsincluded in each interval was more than 300. Therefore,
for the age range of 7 to 70 years, we compared functional homogeneity across
atlases using independent participants who were not involved in the atlas
construction. wk, week; mon, month; yr, year.
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b The reference atlas derived fram,the avarang,of.,
eight adult-like atlases (18 to 80 years)
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Extended DataFig. 4 | Hierarchical clustering analysis of 26 age-specific cluster of 18- to 80-year-old atlases. For each vertex, we assigned the label as

group atlases. a, Hierarchical clustering of the 26 x 26 atlas similarity matrix. the system that exhibited the highest occurrence probability across the eight
The atlas similarity was defined as the degree of vertex label overlap between atlases, generating the 7-network reference atlas. VIS, visual; SM, somatomotor;
two atlases. For instance, if there were 4,000 vertices with the same label in two DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM,
atlases, the atlas similarity was 4,000/4,609 = 0.868. b, The reference atlas was defaultmode;w, week; m, month;y, year.

derived from the average of eight adult-like atlases, identified asahomogeneous
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Extended DataFig. 5| Lifespan growth patterns of within-systemand
between-system functional connectivity. The lower triangular matrix

(shown in black) represents the normative growth curves for within-system and
between-system FC, while the upper triangular matrix (shown in blue) represents
the growth rates for these FC measures. The diagonal of the matrix shows the
growth curves and growth rates of within-system FC; the off-diagonal elements
represent the growth curves and growth rates of between-system FC. For the

growth curve, the median (50th) centile is shown as asolid line, and the 5th,
25th, 75th, and 95th centiles are represented by dotted lines. The growth rate is
characterized by the first derivative of the median centile. The gray shaded areas
denote the 95% confidence interval, estimated through bootstrapping 1,000
times. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention;
LIM, limbic; FP, frontoparietal; DM, default mode; FC, functional connectivity.
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Extended DataFig. 6 | Sex differences in the normative growth curves of the
functional connectome at global, system, and regional levels. a, Sex-stratified
growth curves for global functional metrics. The solid line represents the 50th
centile, with the two surrounding dotted lines denoting the 95% confidence
interval, which were estimated by bootstrapping 1,000 times. The subplots from
left toright represent the global mean of the connectome, global variance of the
connectome, and global system segregation, respectively. b, Sex-specific growth
curves for system segregation in each network. The solid line represents the
50th centile, with the two surrounding dotted lines denoting the 95% confidence

interval. c, Sex differences in the growth curves of regional-level FCS, where

red colors indicate that the values of males are significantly higher than those

of females, and blue colors denote that the values of females are significantly
higher than those of males. Among the 4,609 vertices, 3,872 exhibited significant
sex differences (p < 0.05, Benjamini-Hochberg FDR corrected). FCS, functional
connectivity strength; VIS, visual; SM, somatomotor; DA, dorsal attention; VA,
ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode. M, male; F,
female.**, p < 0.01, *** p <0.001, Benjamini-Hochberg FDR corrected. The exact
p-valuesis provided in Supplementary Table 3.
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Extended DataFig. 7| Aseries of sensitivity analyses for the validation

of lifespan normative growth curvesand growth rates of the functional
connectome. a, Global mean of the connectome. b, Global variance of the
connectome. ¢, Global system segregation. d, System segregation ineach
network. These sensitive analyses included the validation of the potential effects
of head motion using more strict head motion threshold (mean framewise
displacement (FD) < 0.2 mm, N = 24,494), the impact of uneven sample and

site distributions across ages using a balanced sampling strategy that ensures
uniformity in participantand site numbers (N = 6,770, resampling 1,000 times),
the reproducibility of the results using asplit halfapproach (N
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Extended DataFig. 8| Lifespan normative growth patterns of negative
functional connectivity. a, Global mean of negative functional connectivity

by calculating averaged negative connectivity across all edges. The left panel
shows the averaged median (50th) centile asasolid line, surrounded by the
averaged 5th, 25th, 75th, and 95th centiles as dotted lines. In the right panel, the
solid line illustrates the growth rate of the averaged median centile, with its 95%
confidence interval highlighted by gray shaded areas. b, Global mean of negative
connectivity by calculating averaged negative connectivity across only non-zero
edges. The left panel shows the averaged median (50th) centile asasolid line,
surrounded by the averaged 5th, 25th, 75th, and 95th centiles as dotted lines. In
theright panel, the solid line illustrates the growth rate of the averaged median
centile, with its 95% confidence interval highlighted by gray shaded areas. c, The
median centiles (top panel) and their growth rates (bottom panel) for all vertices

at several key age points. d, The lifespan growth axis of negative functional
connectivity, represented by the first principal component (accounting for
53.5% of the variance) from a PCA on regional-level FCS curve. e, Based on the
lifespan principal axis, all vertices across the brain were equally divided into 20
bins. The zero-centered curves of all vertices within each bin were averaged. The
firstvigintile (depicted in darkest blue) represents one pole of the axis, while the
twentieth vigintile represents the opposite pole (depicted in darkest yellow).

f, Astrong negative correlation was observed between the lifespan principal
growth axis and the sensorimotor-association (S-A) axis (r =-0.50, py, <0.0001,
one-sided) (linear association shown with a 95% confidence interval). FCS,
functional connectivity strength; PCA, principal component analysis; wk,

week; yr, year.
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B A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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[l For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

B Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software used for Data collection. The neuroimaging data were from existing datasets (detailed below) which acquisition’s are presented
detailed in previous work.

Data analysis Quality control for raw T1-weighted, T2-weighted, and task-free functional MRI images: MRIQC (v0.15.0).The structural MRI and functional
MRI images from most datasets were preprocessed using the HCP minimal preprocessing pipeline (v4.4.0-rc-MOD-e7a6af9). This included
Freesurfer (v6.0.0), FSL (v6.0.5), MSM (v3.0), and HCP Connectome Workbench (v1.5.0). The HCP pipeline is encapsulated within a
containerized environment provided by the QuNex platform (v0.93.2). For the ABCD datasets, the structural MRI and functional MRl images
were preprocessed using the ABCD-HCP preprocessing pipeline (v1). For the dHCP datasets, the structural MRI and functional MRl images
were preprocessed using the dHCP structural and functional pipeline (v1). For the BCP datasets, the structural MRI images were preprocessed
using the IBEAT pipeline (v1.0.0). The postprocessed procedure was achieved using MATLAB (R2018b), SPM12 toolbox (v6470), GRETNA
toolbox (v2.0.0), cifti-matlab toolbox (v2), HFR_ai toolbox (v1.0-beta-20181108), System segregation code (https://github.com/mychan24/
system-segregation-and-graph-tools), Python dev3.8.3), neuroharmonize package (v2.1.0), scikit-learn package (v1.1.3). Normative Model
analyses were performed using R (v4.2.0) and GAMLSS package (v5.4-3). The sex difference were assessed using the summary function of R
based package. Visualization was performed using BrainNet Viewer toolbox (v20191031), Connectome Workbench (v1.5.0), and ggplot2
package (v3.4.2).

Analysis code is available here: https://github.com/sunlianglong/BrainChart-FC-Lifespan

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

We requested and used the following public datasets: the Adolescent Brain Cognitive Development Study (https://nda.nih.gov/), the Autism Brain Imaging Data
Exchange Initiative (https://fcon_1000.projects.nitrc.org/indi/abide/), the Alzheimer’s Disease Neuroimaging Initiative (https://adni.loni.usc.edu/), the Age_ility
Project (https://www.nitrc.org/projects/age-ility), the Baby Connectome Project (https://nda.nih.gov/), the Brain Genomics Superstruct Project (https://
doi.org/10.7910/DVN/25833), the Calgary Preschool MRI Dataset (https://osf.io/axz5r/), the Cambridge Centre for Ageing and Neuroscience Dataset (https://
www.cam-can.org/index.php?content=dataset), the Developing Human Connectome Project (http://www.developingconnectome.org/data-release/second-data-
release/), the Human Connectome Project (https://www.humanconnectome.org), the Lifespan Human Connectome Project (https://nda.nih.gov/), the Nathan Kline
Institute-Rockland Sample Dataset (https://fcon_1000.projects.nitrc.org/indi/pro/nki.html), the Neuroscience in Psychiatry Network Dataset (https://nspn.org.uk/),
the Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository (http://pingstudy.ucsd.edu/), the Pixar Dataset (https://openfmri.org/dataset/
ds000228/), the SRPBS MRI Dataset (https://bicr-resource.atr.jp/srpbsopen/), the Southwest University Adult Lifespan Dataset (http://fcon_1000.projects.nitrc.org/
indi/retro/sald.html), the Southwest University Longitudinal Imaging Multimodal Brain Data Repository (http://fcon_1000.projects.nitrc.org/indi/retro/
southwestuni_giu_index.html), and the UK Biobank Brain Imaging Dataset (https://www.ukbiobank.ac.uk/). Other datasets came from several research working
groups or consortium: the Connectivity-based Brain Imaging Research Database (CBIRD), the Chinese Brain Development Project (CBDP), the Disease Imaging Data
Archiving: major depressive disorder (DIDA-MDD) Working Group, and the Multi-center Alzheimer Disease Imaging (MCADI) Consortium. For details on participant
demographics and imaging scan parameters for each dataset, please see Supplementary Table 1 and 2.

The brain charts and lifespan developmental atlases are shared online via GitHub (https://github.com/sunlianglong/BrainChart-FC-Lifespan).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We reported the sex-stratified growth curves of the functional connectome.

Reporting on race, ethnicity, or Race, ethnicity and other socially relevant information were not analyzed in this study.
other socially relevant

groupings

Population characteristics We initially collected 44,576 scans from 42,428 participants with multimodal structural MRI and task-free fMRI data in total.
After a stringent quality control process, the final sample included 33250 healthy participants (46.3% males) from 132 sites
(33250 cross-sectional scans and 1481 longitudinal scans).

Recruitment Data for the current study were not directly recruited by our research team but were instead aggregated from existing
databases. Subjects in these databases were recruited by various research initiatives. Specific recruitment details are
presented in the original papers of these studies.

Ethics oversight Ethical approval and oversight were managed by the respective institutions that contributed to the neuroimaging datasets.

Written informed consent of participants or their guardians was approved by the local ethics committees for each dataset.
For details on ethical considerations, readers are referred to the ethical statements provided in the original studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No sample size calculations were performed. Initially, we aimed to collect as much multimodal MRI data from global sources as possible. In
the sensitivity analysis, we ensured consistent sample sizes and numbers of sites across different age groups, and we used 6,770 participants
to replicate our findings. This project leverages both publicly accessible data and data provided by collaborators. We initially collected 42,428
participants with multimodal structural MRI and task-free fMRI data in total. After quality control, the sample consists of 33,250 participants
ranging in age from 32 postmenstrual weeks to 80 years and across 132 scanning sites. The sample size of each site is detailed in
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Supplementary Table 1.

Data exclusions In this study, we adopted a comprehensive four-step data quality control framework, combining automated assessment approaches and
expert manual review to assess both structural and functional images across all 42,428 participants. Exclusions were as follows: Step 1 (quality
control of raw images) led to the removal of 822 structural and 951 functional scans; Step 2 (data processing) eliminated 2,731 structural and
2,816 functional scans; Step 3 (surface and head motion quality control) resulted in the exclusion of 2,012 structural and 3,442 functional
scans; and Step 4 (visual check) excluded 636 structural and 1,103 functional scans. Only scans that successfully passed quality control for
both functional and structural images were retained. Ultimately, applying the above rigorous criteria led to the exclusion of 9,845 scans in
9,178 participants.

Replication The lifespan growth patterns of functional connectomes were validated at the global, system, and regional levels using various analysis
strategies. Each validation strategy yielded growth patterns that closely matched the main results. (i) To validate the potential effects of head
motion, the analyses were reperformed using data from 24,494 participants with a stricter quality control threshold for head motion (mean
FD < 0.2 mm). (ii) To mitigate the impact of uneven sample and site distributions across ages, a balanced sampling strategy was employed to
ensure uniformity in participant and site numbers (N = 6,770, resampling 1,000 times). (iii) To validate reproducibility of our results, a split half
approach was adopted. (iv) To examine the potential effects of data samples, a bootstrap resampling analysis was performed (1,000 times).
(v) To examine the potential effects of specific sites, a leave-one-site-out analysis was conducted. The results of these sensitive analyses were
quantitatively assessed in comparison to the main results. Specifically, a series of 80 points at one-year intervals was sampled for each curve,
and Pearson’s correlation coefficients were then calculated between the corresponding curves. At both global and system levels, all growth
curves in the sensitivity analyses exhibited a high degree of correlations with those shown in the main results (r = 0.97-1 for global mean of
FC; r=0.98-1 for global variance of FC; r = 0.99-1 for global system segregation; r = 0.98-1 for system segregation of VIS, DA, VA, FP, and DM
networks; r = 0.91-1 for system segregation of SM networks; r = 0.8-1 for system segregation of LIM networks, except for r = 0.51 of the
balanced resampling analysis; all pFDR < 10-5). The similar results were observed for growth rate. We observed consistent results when the
sampling was obtained with six-month intervals (160 points) and monthly intervals (1,000 points). At the regional level, the lifespan growth
axes in the sensitivity analyses were highly spatially associated with that shown in the main results (all r = 0.94-1, p < 0.0001). All these
validation strategies replicated our main results.

Randomization = Randomization was not performed because participants were not placed into experimental groups.

Blinding Blinding is not relevant to this study because participants were not placed into experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

n/a | Involved in the study n/a | Involved in the study
Antibodies B B chiP-seq
Eukaryotic cell lines B B Fow cytometry
Palaeontology and archaeology I B MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

Magnetic resonance imaging

Design type Structural MRI, task-free functional MRI
Design specifications No trials

Behavioral performance measures  No behavioral measures
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Diffusion MRI B Used

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

Model type and settings

Effect(s) tested

. Not used

HCP pipeline (https://github.com/Washington-University/HCPpipelines/releases), ABCD-HCP pipeline (https://github.com/
DCAN-Labs/abcd-hcp-pipeline), dHCP pipeline (https://github.com/BioMedIA/dhcp-structural-pipeline, https://
git.fmrib.ox.ac.uk/seanf/dhcp-neonatal-fmri-pipeline), iBEAT pipeline (https://github.com/iBEAT-V2/iBEAT-V2.0-Docker).

The surface registration.During the the PostFreeSurfer stage of HCP/ABCD-HCP pipeline, the cortical surface were mapped to
the standard fs_LR_32k space through spherical registration and surface downsampling. For the individual cortical surface
obtained from the dHCP and iBEAT V2.0 structural pipelines, we employed a three-step registration method to align with the
fs_LR_32k standard space of adults. For participants aged 32 to 44 postmenstrual weeks, we implemented the following
steps: (1) individual surfaces were registered to their respective postmenstrual week templates; (2) templates for 32-39
postmenstrual weeks and 41-44 postmenstrual weeks were registered to the 40-week template; and (3) the 40-week
template was subsequently registered to the fs_LR_32k surface template. For participants aged 0-24 months, the steps
involved were as follows: (1) individual surfaces were registered to their corresponding monthly age templates; (2) all
monthly templates were registered to the 12-month template; and (3) the 12-month template was then registered to the
fs_LR_32k surface template. Finally, all individual’s surface were downsampled to fsaverage4 space.

The volume registration. For participants aged 32 to 44 postmenstrual weeks, a three-step volume registration procedure
was employed: (1) individual T2w images were mapped to their corresponding postmenstrual week templates; (2) the 32-39
and 41-44 postmenstrual week templates were registered to the 40-week template; and (3) the 40-week template was
registered to the MNI template. For participants aged 0-24 months: (1) individual T2w or T1w were aligned with their
monthly age templates. For the individual less than 6 months we used T2w images, and for the individual larger than 6
months we used T1w images. (2) all monthly templates were registered into the 12-month template; and (3) this 12-month
template was then registered to the MNI template. For participants aged larger than two years, the individual structural MRI
were registered to the standard MNI space.

Surface template: the dhcpSym cortical surface templates, the UNC infant cortical surface templates, the fs_LR_32k surface
template, the fsaverage4 surface template.
Volume template: the dHCP 4D volume templates, the UNC 4D infant volume templates, MNI152 volume template.

The 24 motion parameters, including six frame-wise estimates of motion, the derivatives of each of these six parameters, and
quadratic terms of each of the six parameters and their derivatives; global time series; WM time series; CSF time series.

Volumes with FD greater than 0.5 mm and their adjacent volumes (1 prior and 2 subsequent) were replaced with linearly
interpolated data. These interpolated data were retained in the time series prior to the construction of functional
connectivity matrices.

Mass univariate. To estimate the normative growth curves for various metrics of the functional brain connectome in healthy
individuals, we implemented the generalized additive models for location, scale, and shape (GAMLSS). For each individual
functional connectome metric (at the global, system, and regional level), we constructed the GAMLSS procedure with setting
individual connectome metric as the dependent variable, age as a smooth term (using the B-spline basis function), sex and in-
scanner head motion as other fixed effects, and scanner sites as random effects. .

Pearson correlation was used to measure the strength of functional connectivity.

Specify type of analysis:  |Jll whole brain |l ROI-based [ Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

n/a | Involved in the study

vertex-wise

False discovery rate correction (FDR, g=0.05) was used to account for multiple comparisons.

Il B Functional and/or effective connectivity

B B Graph analysis

B [ Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity was measured as the Pearson correlation between regional time series.
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