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lecev iewpoint aftereffect is a, isual illusion that, after adaptation to a face side ie W the percej ed ie
direction of the same face subsequentl_ presented near its frontV ie_ is biased in a direction opposite to
that of the adapted , ie_ . E_e gaze is a unique component in face not onl_ because its direction is rela-

el_independent of face, ¥e direction, but also because it is a primar é’ue for co, e, ing social atten-
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tion.”Here, _ e studied the contribution of gaze direction adaptation to ¥he formation gf face  ie_ point
aftereffect. We found that a tin_ (

uli could induce a dramatic reé{uction in the magnitude of face  ie point aftereffect. Ho er, , ertical
iq] ersion of the face stimuli almost abolished the reduction. Implications of these findings about face

in terms of relat{'] e area) change of gaze direction in adapting face stim-

Gaze v ey representation and gaze direction representation are discussed.

Visual cortex

© 2009 Elsq, ier Ltd. All rights resey, ed.

1. Introduction

Visual adaptation has been dubbed the ps_choph_sicist’s micro-
electrode because the resulting , isual aftere1¥ects co¥11d be utilized
toinfer selecq’] eneural sensit{', ities tq, arious stimulus dimensions,
from lo_ -le el stimulus features (Anstis & Moulden, 1970; Blake-
more &‘e(ampbell, 1969; Kohler & Wallach, 1944) to mid—l@l el sur-
face and shape properties (Regan & Hamstra, 1992; Suzuki &
Grabo_ eck_, 2002;V an Lier, Vergeer, & Anstis, 2009), to high—l% el
objectand che properties (Fang & He, 2005; Leopold, O'Toole, Vetter,
& Blanz, 2001; Rhodes, Jeffer _, Watson, Clifford, & Naka_ama, 2003;
Watson & Clifford, 2003; ngster. Kaping, Mizokami, %1 Duhamel,
2004; Webster & Maclin, 1999; Zhao & Chubb, 2001). For example,
adaptation to a left_ard or rightward gaze/facev ie_ could bias
our percept of gaze‘/}[ace ie W direction opposite to the adapted
direction. These illusions _ ere termed gaze direction aftereffect
(Jenkins, Beq, er,& Calder, 28/06)and face ie pointaftereffect (Fang
& He, 2005; R_u & Chaudhuri, 2006), . hich suggest a multichannel
s _stem comp¥ising separate channe‘ivs for coding different gaze
d¥rections or facev ie_ s (Calder, Jenkins, Cassel, & Clifford, 2008).
Theset WP aftereffects\ﬁ ealso rece{'l edattentionbe_ond, isionre-
search areas because face and gaze directions are pr}/mar cues for
con, e_ing social attention and the_ ha e been the focus of a large
bo& o%‘social attention’ studiesin rgcent ears (Nummenmaa & Cal-
der,2009). y

Man_ single-unit recording and functional magnetic resonance
imaging(fMRl) studies hq, e been carried out to stud_ neural rep-

resentations of gaze direction and facev ie_ in monke v and human
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isual s_stem. In monke  subjects, Perrett and colleagues (1991)
found tl'}/at the majorit o¥ neurons in the anterior superior tempo-
ral sulcus (STS) exhibi¥ed face  ie_ selectj it_ and most of them
sho_ ed a unimodal tuning propert , hich Has been confirmed
b_ other groups (De Souza, Eifuku, f’arr%ra, Nishijo, & Ono, 2005;
D%simone, Albright, Gross, & Bruce, 1984; Hasselmo, Rolls, Ba_lis,
& Nal_ a, 1989). Such neurons _ ere also found in the inferior tgm—
poral cortex (IT) (Desimone et a‘f./, 1984). Although ilil/ estigated less
extensj, el , neurons tuned to distinct gaze directions _ere also
identié'ed ¥n STS (Perrett, Hietanen, Oram, & Benson, 1%2). And
bilateral STS ablation could impair gaze perception specificall
(Campbell, He__ ood, Co_e_, Regard, & Landies, 1990). In huma
subjects, usingl Ya\vn fMRI \évdayptation paradigm, Fang, Murra_, and
He (2007) demonstrated that facev ie_ s _ere represented }]n STS
and FFA (fusiform face area) (see also‘%ng\fews & E_ bank, 2004).
Hoffman and Haxb_ (2000) sho_ ed that attending to gaze direc-
tion could actj, ate ¥TS more strongl_ than attending to face iden-
tit_, suggesting the important role (Yf STS in gaze perception. An

I adaptation stud_ b_ Calder and colleagues (2007) prQ, ided
clear e, idence for serrat% neuronal populations in STS coding left
and right gaze.

In summar_, con, erging § idence has identified STS as a critical
area for coding both gaze direction and face_, ie W A natural ques-
tion to ask is ho_  the neural representations of gaze direction and
face  ie_ influence each other. The interaction ofV ie_ direction
and gaze direction might con, e different cues to socigY attention
and perhaps links to more gene¥al proposals regarding the role of
STS in processing intentionalit_ (Vander W_k, Hudac, Carter, Sobel,
& Pelphre_, 2009). S% eral hu%lan behQ/ io¥al studies hQ/ e sho_n
an influence of  ie_ direction on the perception of gaze direction
andv icev ersa (Langton, 2000; Langton, Hone yman, & Tessler,
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2004; Ricciardelli & Dr{'l er, 2008). De Souza and colleagues (2005)
elaboratel  in estigated the function of different parts of anterior
STS in ma%aque monke_ s and found that modulation of the re-
sponses of faceV ie W—selgcts, e neurons b_ gaze direction _ as e, i-
dent in the rostral part of anterior STSy(see also Perrett et al.,
1992). Specificall _, neuronal responses to a face side_ ie_ could
be either enhancgd or inhibited b_ the gaze direction simulating
e_e contact directed to_ ard subijcts (a similar stimulus can be
f(yund in Fig. 1A in the incongruent condition), but the proportion
of the enhanced neurons S signiﬁcantly larger than that of the
inhibited neurons.
In this stud , Wt took aq/ antage of faceV ie_ point aftereffect to
in, estigate thi¥issue. For a face image, its , ie_ direction and gaze
direction are relaq’l el independent. And both  ie direction
adaptation and gaze di¥ection adaptation might contribute to the
formation of faceV ie. point aftereffect. To separate these t o
adaptation effects, in ¥¥1e first experiment, we manipulated face
ie_ direction and gaze direction independentl  in our stimuli.
The adapting stimulus _as a face side_, ie_, but the gaze could
be either consistent _ ith the facev ie_ or projected to_ ard the
subject (i.e. simulating e_e contact). B_ comparing the magnitudes
of face  ie_ point afteref?’ect in these t” o conditions, _ e examined
ho_ the gaze direction modulated the }gceV ie_ point ‘a’%tereffect. In
adg\lltion, to test if the modulation (if there as an_) as simpl
due to the face image difference bet ween t¥¥ese t\}(/o conditions),/

A Upright adaptor

Congruent

Incongruent

L3

R30

B llnrinht tact. SRR

Fig. 1. Face stimuli in Experiment 1 (A and B) and Experiment 2 (C and D). (A)
Adapting stimuli are the 30° sidev iews (left and right) of a face. Their gaze direction
and facev ie_ direction are either congruent (left column) or incongruent (right
column). (B)‘flest stimuli are the from'v ie. (0°)and 3°, 6° sidev ie_ s (left and right)
of the face. Their gaze direction and face  ie  direction are congruent. (C and D)

\%
Vertical iq/ ersions of the stimuli in (A) and (B).

e carried out the second experiment in _ hich all the stimuli _ ere
erticall_ in erted. Since the image dif%[grence as the same in
these t "o experiments, an_ difference in the modulation effect
should We attributed to theyspeciﬁc role of gaze direction in face

y le,point aftereffect.

2. Experiments 1 and 2
2.1. Methods

2.1.1. Participants
Six na{, e subjects (2 male and 4 female) _ ith normal or cor-
rected to normal , ision participated in both Experiments 1 and 2.
The ga e _ritten, informed consent in accordance _ ith proce-
. W,
durgs and protocols apprg, ed b_ the human subject rg, ie,  com-
mittee of Peking Un{'/ ersity.

2.1.2. Apparatus and stimuli

Stimuli _ ere presented on an IIYAMA color graphic monitor
(model: Ml\%OBUT; refresh rate: 100 Hz; resolution: 1024 x 768;
size: 19in.). Thev ie_ ing distance _ as 57 cm. In Experiment 1,
the adapting and test stimuli _ ere upright faces and they were
generated b_ projecting a 3D face model _ ith different in-depth
rotation ang‘Yes onto the monitor plane it‘ﬁl the frontV ie. as the
initial position; 30° rotation for adaptors; and 0°, 3°, andvéO rota-
tion for test stimuli. Both left and right rotations _ ere executed.
FaceGen Modeller 3.1 (http://WWW.facegen.com/) was used to gen-
erate the 3D face model and manipulate the gaze direction of the
face. For the adaptors, the gaze direction could be either the same
as the face  ie_ direction (congruent condition) or simulate e_e
contact directed to_ard the subject (incongruent condition)
(Fig. 1A). For the test stimuli, the gaze direction _ as the same as
the face  ie_ direction (Fig. 1B). In Experimentvﬁ, the adapting
and test stimuli _ ere the , ertical iq/ ersions of the stimuli in
Experiment 1 (Fig. 1C and D). All the stimuli extended no more
than 3.2° x 3.2°.

2.1.3. Experimental procedure
In Experiments 1 and 2, there _ ere t WP adaptation conditions
(gaze direction and face , ie_  direction _ ere congruent or incon-
gruent) and one baseline condition (no adaptation). Each adapta-
tion condition had ten blocks (fj e blocks _ ith the left sidev ie
adaptor and the other fj e _ ith the right side  ie_ adaptor), an
the baseline condition had fj, e blocks. Each block consisted of 50
trials. In Experiment 1, for the t_ o adaptation conditions, subjects
adapted to the 30° side_, ie_ of the face, and the QZ e test stimuli
were al_a_s the frontV ie. (0°) and 3° and 6° side_ ie_s (left
and righ‘{\s. Each adaptation Y)‘iock began _ ith a 25 s pre-adaptation.
After a 5 s topping-up adaptation and a 1 s blank inte(l al, one of
the S,e test stimuli _as presented for 0.2 s and subjects _ere
asked to make a t_ o-alternatj e forced-choice (2-AFC) judgment
of the  ie  direction of the test stimulus, either left or right
(Fig. 2). To 3, oid local adaptation during the adaptation period,
the adapting stimulus floated randoml_ _ ithin a 5.7° x 5.7° area,
hose center _ as coincident _ ith the ‘center of the monitor. The
W int 9 . . L
starting point of the adapting stimulus W3S also randoml_ distrib
uted in this 5.7° x 5.7° area, and its floating_, elocit Wi 0.85°/s.
The position of the test stimulus _ as randoml dist1¥buted ithin
the 5.7° x 5.7° area too. During the experimenyal period, a fixation
point _ as placed in the center of the monitor and subjects _ ere re-
quirecf/\{o maintain fixation. In all the adaptation blocks, ea(‘:’fll of the
e test stimuli _ as presented 10 times, for a total of 50 stimulus
presentations/tri‘ell\is ith a random sequence. All of the data from
the ten blocks _ ere pooled together for anal_sis. The baseline con-
dition WSy €r y similar to the adaptation %nditions except that



subjects __ere asked to judge the, ie_ direction of the test stimulus
ithout an_ adaptation. The temporal order of a total of 25
x 10+ 1 x 5) blocks _ as randomized across experimental con-
ditions. Subjects _ere g] en one practice block for each experi-
mental condition before the main experiment. In Experiment 2,
the procedure _ as the same as that of Experiment 1, but the stim-
uli _ere the  ertical i, ersions of those in Experiment 1.
Iy(\;r both Experiments 1 and 2, data _ ere collected in 2-3 ses-
sions. Experiment 1 _ as carried out before Experiment 2. Ho & er
e re-run Experiment 1 _ ith three of the six subjects after ]g(per—
) . w - )
iment 2. Their data shoWed er_ similar pattern as before, _ hich
suggested that the experimental order Wwas nota confound.

2.2. Results

The results are presented in Fig. 3 as ps_chometric functions:
the percentage of trials in _ hich subjects irP(Iiicated that the  ie
direction of the test faces _as opposite to the adaptor plotted as
a function of their true, ie_ direction. In both experiments, _ ith-
out an_ adaptation, sul\gjec‘{\g g e nearl_ perfect performané/g for
all fj e‘test stimuli (50% le el for the frorY ie_, correct identifica-
tion for the 3° and 6° test stimuli; see the bla‘(ﬁ( lines in Fig. 3). In
other _ ords, subjects had no trouble discriminatingV ie_ direc-
tions 0‘%,30 and 6° from the frontv ie. . Ho er, after adaptation
to the 30° side, ie_ of the upright or i}, erted face, the ps_chomet-

: . w . .
ric functions s¥10 Wed a general horizontal shift to the lefy for both
the congruent and incongruent conditions (compare the black lines
ith the dark gra_ and light gra_ lines in Fig. 3). The front_ ie_s
. . . LV W
ere often Judgedyas facing a A from the adaptedV ie_ direction
and § en some of the test stimt}ii facing in the same alyrection as

the adaptors _ ere perce{, ed as facing the direction opposite to
that of the adaptors.

To quantitat{‘] el_measure the magnitude of the, ie_ point afteref-
fect, ps. chometric_ alues at the fj e test ie_s ere fit b_ using a
cumulatj, e normal function for indj iduaYsuB/j/ects. We inté/rpolated
to find the, ie_ expected to be seen as the front, ie_ in 50% of the tri-
als before and after adaptation. We quantified the magnitude of the

ie_point aftereffect as the angular difference bet_een thev ie_ s
found through interpolation before and after adaptation (i.e. a hori-
zontal shiftbet_ eenthe cumulatj e normal functions).In Experiment
1, the magnitugl\ies ere significantl abg e O for both the congruent
condition (Mean + SEM: 1.21 £ 0.23; t(5)=5.16, p = 0.004) and the
incongruent condition (Mean+SEM: 0.77£0.16°;, t(5)=4.74,
p =0.005). The magnitude for the congruent condition _ as signifi-
cantl_ larger than that for the incongruent condition (t(5)=3.057,
p= 0.{328) (left panel of Fig. 3). In Experiment 2, the magnitudes _ ere
also significantl _abo, e O for both the congruent condition (Mean + -
SEM: 1.69 + 0.3%’; t(5)=4.71, p = 0.005) and the incongruent condi-
tion (Mean + SEM: 1.52 +0.32; t(5) =4.77, p = 0.005). But there _ as
no significant difference bet_ een these t_ o conditions (t(5) = 1.068,
p = 0.334) (right panel of Fig. 3). We also compared the magnitudes
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Fig. 4. Normalized,, ie point aftereffects for the incongruent adaptation condition
in Experiment 1 (upri‘g’ht face) and Experiment 2 (il%] erted face). When the gaze
direction and faceV ie_direction of the adapting stimulus are congruent, the
magnitude of theV ieWpoint aftereffect Wwas set to 1. Error bars denote 1 SEM.

3. Experiment 3

Experiment 1 demonstrated that face sid ieWs ith incongru-
ent gaze induced a significantl Weaker ie_ point a‘?/tereffect than
those With congruent gaze. OXe possible explanation is that the
sidev ie. s ith incongruent gaze might be percei/ ed as being clo-
ser to the front  ie_ than those _ith congruent gaze, thus the
could be considered as _ eaker adaptors. In Experiment 3, _ e at=
tempted to measure the effect of gaze direction on percei, e‘g face

v ieW direction.

3.1. Methods

3.1.1. Participants

Six nai/ e subjects (4 male and 2 female) _ ith normal or cor-
rected to normal  ision participated in Experiment 3. Three of
them also participated in Experiments 1 and 2. The g e Written,
informed consent in accordance With procedures anﬁ protocols ap-
pro ed b_ the human subject g, ieW committee of Peking

U it *
nj, ersi y

3.1.2. Apparatus and stimuli
The apparatus and the face model _ ere the same as those used
in Experiments 1 and 2. Thev ie_ing Y:Yistance as 57 cm. Sample
faces _ere the adapting stimuli in Experiment 1, 30° side , ie_s.
Their gaze direction and face  ie_ direction could be congruent
or incongruent. Test faces _ ere ¥V4°. 27°, 30°, 33° and 36° side
ie_s. Their gaze direction and face , ie_ direction _ere congru-

ent‘.NAll the stimuli extended no more th‘évn 3.2° x 3.2°.

3.1.3. Experimental procedure

Subjects _ ere instructed to discriminate facev ieW directions. In
a trial, a sample face and a test face _ ere each presented for
200 ms, separated b_ a 400 ms blank integ al (Fig. 5A). The order
of the sample face and the test face _ as randomized. Subjects
needed to make a 2-AFC judgment of thve direction of the second
face relatj e to the first face (left or right). Each subject completed
a total of 16 blocks, 8 blocks _ ith left side , ie_ s and the other 8
blocks _ ith right sidev ie_ s. Each block contained 50 trials, 25 tri-
als With the congruent sample face and the other 25 trials _ ith the
incongruent sample face. The Q/ e test faces _ ere each presented
10 times, and _ ere randoml_ distributed in a‘glocl(. All of the data
from the 16 blocks were poa/led together for analysis.

2325

The face stimuli _ ere randoml_ presented _ ithin a 5.7° x 5.7°
w L ty . w h
area, hose center _ as coincident’_ ith the center of the monitor.
During the experimental period, a I%v(ation point _ as placed in the
center of the monitor and subjects were required to maintain
fixation.

3.2. Results

The results are presented in Fig. 5B as ps_chometric functions:
the percentage of trials in _ hich subjects indicated that the, ie
L w ; .
direction of the test faces _ as more tilted from the front, ie_ than
the sample face plotted as a function of their  ie_ direction. It is
apparent that, comparing to the congruent sample face, the incon-
gruent sample face that simulated eye contact WS judged to be
closer to the front, ie W
To quantitati/ e\f measure the effect of gaze direction on per-
cej ed face ieW d¥rection, ps. chometric , alues at the l&e test
ieWs ere %t b_using a cumulXt' e norma\f function for indj, idual
subjects. We int)érpolated to find thev ie. matching the percei, ed
v ie_ direction of the congruent and incongruent sample faces.
Mean , ie_ directions X eraged across subjects ere 29.9° and
28.4° %r the congruent and incongruent sample faces, respectj el .
The effect R small (1.5°), but significant (t(5) = 3.272, p = 0.022).

4. Discussion

We obser, ed a significant , ie_ point aftereffect after adapting
to an upright face or an i, erted face, regardless of _ hether the
face  ie_ direction _as the same as the gaze direction or not.
But the modulation gilfect of gaze direction WS ident onl_ for
the upright face. These findings shed light on the neural repre%en-
tations of face , ie_  and gaze direction and their interaction.

v . . . .

Although both gce ie_ adaptation and gaze adaptation might
contribute to the formation of faceV ie_ point aftereffect, it as un-
clear to _ hat extent gaze adaptation could contribute to the after-
effect, especiall_ considering that the gaze occupies a_, er_ small
portion of the fgce (i.e. 1.7% in our stimuli). Surprising‘f , lzaeping
the gaze directed to_ ard subjects in the adapting face i%sulted in
about 1/3 reduction of the magnitude of thev ie_ point aftereffect.
In other _ ords, the transfer ofv ie_ point afterefi’e\)lct bet_een faces

ith differentv ie. -gaze configurations _as onl_ 68%. In a pre, i-
ous stud_, using ‘t\he same experimenta‘ivproce(Yure, Fang, ljichi,
and He (3’007) found that the transfer ofv ie_ point aftereffect be-
t_een faces _ith different identities _as 82%. This comparison
demonstrates the special and important role of gaze direction in
face  ie_point aftereffect - a tin_ gaze change (in terms of relatj e

w .
area) has a more profound ef¥ect than a Whole face identit
change! y

The results in Experiments 2 and 3 rule out t_ o potential expla-
nations of the gaze modulation effect in Experiment 1 (upright
face). One explanation is that the modulation effect _as due to
the face image difference bet_ een the adaptors in the congruent
and incongruent conditions. Wo er, the null effect in Experi-
ment 2 renders this explanation impossible since the image differ-
ence _as the same in Experiments 1 and 2. The other explanation
is that the sideV ie_s With incongruent gaze might be percei, ed as
being closer to the‘ﬁon ie_ than those _ ith congruent gaze, thus
the  could be considered as _ eaker adaptors. In Experiment 3, e
fouXd that the direct gaze (i.eleooking at the subject) could bias t\h/e
perce'% ed direction of the adapting facev ie. to_ards the front

ie about 1.5°, hich meant that the percej ed direction of

w . .
the adflpting face  ie as about 28.5°. Recentl , e measured
the angular tuning function of the face  ie_ point“aftereffect, that
is, ho_does the magnitude of the aftereffect depend on the angle
bet ween adaptor and test (manuscript in preparation). We found
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Fig. 5. Procedure and results in Experiment 3. (A) Schematic description of the experimental procedure. A sample face and a test face _ ere presented successi] el . Subjects

needed to make a 2-AFC judgment of thev ie

direction of the second face relatj e to the first face (left or right). (B) Ps_chometric functions sho_ ing_ ie

direction

judgments for the congruent and incongruent sample faces. Data points 3 eraged across subjects _ ere fit using a cumulatj e normal function. The abscissa refers to the, ie
direction of the F\l/ e test faces. The ordinate refers to the percentage of trials in Which subjects indicated that theV iew direction of the test faces WAs more tilted from the front

v iew than the sample face. Error bars denote 1 SEM.

that, as the angle increased from 0° to 90°, the aftereffect magni-
tude increased quickl , peaked at 20°, and then graduall  de-
creased. These data SLyggested that the percej ed change oi’ face

ie_ direction should enhance (rather than attenuate) the afteref-
fect, Which is opposite to the prediction from the second
explanation.

Our ps_choph_sical data, along With pr, ious electroph_siolog-
ical and neuroimgging studies, point to the determinatj ey role of
neural circuits in STS in the face ieWpoint aftereffect. First, in
the stud_ b_ Fang et al. (2007), e speculated that the strong
transfer (yf tl%’e faceV ie_ point aftere‘?’fect bet_een faces _ ith differ-

: R w - . w .
ent identities is due to the fact that ie —sngct e face neurons in
STS are generall not sensitj, e to identit_(Perrett et al., 1992). Sec-
ond, the signiﬁée’mt reduction of face i¥ point aftereffect b_ the
incongruent gaze direction can be explained b_ the existent %nd—
ings in STS. One explanation is that both faceV P/e and gaze direc-
tion are coded in STS and their neural representations contribute to
the formation of the iewpoint aftereffect (Andrews & E_bank,
2004; Calder et al., 2007; Fang et al., 2007). Howe, er, on‘fv face

v ie_ adaptation took effect in the incongruent condition. A sgcond

exp‘ivanation is that neuronal responses to a face side , ie_ could be
modulated (either enhanced or inhibited) b_ the gaze direction
simulating e_e contact directed to_ ard subjeé{s, and the net mod-
ulation effeé{ at population 1 eiN as enhancement (De Souza
et al., 2005), hich might counteract the adaptation effect and lead
toa Weaker a‘i’i’tereffect. It should be noted that these t WP explana-
tions are not mutuall_ exclusj e.

Wh_ does the inco¥lgruent gaze direction hg, e little effect _ ith

. . L . w
the in ‘erted face image? Although_ ertical in, ersion does not af-
fect subjects’ percept of face ieW direction (Fig. 3, baseline condi-
tion), it has been shown that sensiti] it_ for gaze direction could be
s§, erel impaired b_ such an iqﬁersio}i (Jenkins & Langton, 2003;
Sch ari‘inger, Lomeier, & Fischer, 2005). Decreased sensiti/ it
might lead to less gaze direction-specific adaptation and less mod=
ulation of the  ie point aftereffect consequentl  (Clifford &
Rhodes, 2005; Murra_ & Wojciulik, 2004). y

In summar_, using ps _choph sical adaptation, e demon-
strated the imp%rtant role 0¥ gaze d¥rection in modulating the mag-
nitude of ieWpoint aftereffect, suggesting a close relationship
between face ie_ representation and gaze direction representa-
tion. We also sho_ ed that  ertical in ersion of face images could
abolish the modulation effect. Stud_ing the representations of face

v ieW and gaze direction not onl :Y ances our understanding of
the neural mechanism of face pe¥ception, but also help to under-
stand ho__humans possess remarkable social attention skills since
social attention is con, eyed primarily by gaze direction and face

v ieW direction. Almost all pr
v ieW separatel (Nummenmaa & Calder, 2009). In leture research,

ious researches stud_ gaze and face

more ps chopM sical, brain imaging and single-unit studies are
needed 1% carr_“out to obtain a full understanding of the interac-

tion between gaze direction and faceV ieW and its biological

significance.
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