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Summary

Training can lead to long-lasting improvement in our percep-
tual ability, which is referred to as perceptual learning.

Unraveling its neural mechanisms has proved difficult.

With functional and structural magnetic resonance imaging
(MRI), we addressed this issue by searching for the neural

correlates of perceptual learning of face views over a long
time course. Human subjects were trained to perform a

face view discrimination task. Their behavioral performance
and MRI signals were measured before, immediately after,

and 1 month after training. We found that, across individual
subjects, their behavioral learning effects correlatedwith the

stability improvement of spatial activity pattern in the left
fusiform cortex immediately after and 1 month after training.

We also found that the thickness of the left fusiform cortex
before training could predict subjects’ behavioral learning

effects. These findings, for the first time, not only suggest
that, remarkably, the improved pattern stability contributes

to the long-term mechanisms of perceptual learning, but
also provide strong and converging evidence for the pivotal

role of the left fusiform cortex in adaptive face processing.
Results and Discussion

Perceptual learning has been studied extensively both
because of its close links to cortical plasticity and because it
reflects an inherent property of our perceptual systems and
thus must be studied to understand perception [1]. Not sur-
prisingly, visual object recognition and discrimination rely crit-
ically on learning [2]. Although behavioral characteristics of
object perceptual learning have been well recognized [3, 4],
its neural mechanisms remain elusive. A popular view is that
training could induce strong and focal changes in the strength
and/or the selectivity of neural responses to trained stimuli.
However, evidence from both functional magnetic resonance
imaging (fMRI) and neurophysiology is inconclusive, even
contradictory [5–10]. An alternative view is that perceptual
learning introduces moderate and distributed effects that
modulate a preexisting, rich, and flexible set of neural object
representations [11].
Notably, two critical issues in object perceptual learning (and

other kinds of visual perceptual learning) are left unaddressed.
First, we know almost nothing about the mechanisms medi-
ating long-lasting learning effects. Previous studies usually
focused on neural changes immediately after training, and
attempts to reveal the mechanisms did not succeed [12, 13].
For example, the learning effect with a texture segmentation
task could be retained for at least 2–3 years [12]. Yotsumoto
and colleagues [13] measured the dynamics of subjects’
behavioral performance with the task and their V1 activation
over a long time course of perceptual learning. Within the first
fewweeks of training, V1 activation in a subregion correspond-
ing to the trained visual field quadrant and task performance
both increased. However, while the improved performance
was maintained 2 weeks after training, the V1 activation
decreased to the level observed before training. Thus, the
long-term mechanisms of perceptual learning are still myste-
rious.Second, there isnoexistingknowledgeof neuroanatomic
correlates of visual perceptual learning, although considerable
progress has been made with other types of learning (e.g.,
music learning, language learning) [14–17]. These two issues
are not only theoretically interesting, as they inform us about
brain organization and limits of plasticity, but they also have
significant clinical implications as they can assist the develop-
ment of optimal training/rehabilitation programs [18].
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(B) Schemati c descripti on of a two-alterna-tive forced- choice (2-AFC) trial in a QUEST stair-case for measuring face view discrim inationthresholds .(C) Exper imental protocol. Subj ects un derwenteight dai ly training sessions. The pretraini ng test(Pre) and the posttraining test 1 (Post1) and test2 (Post2) took place on the days before, immedi -ately after , and 1 month after training.(D) Lear ning curve . Face view discrimina-tion thresholds are plotted as a function oftraining day.(E) Face view discrim ination thre sholds for the 0�,30�, and 60�face views at Pre, Post1, and Post2.Error bars indicate 1 SEM. See alsoFigure S1.and right superior temporal sulci (lSTSand rSTS), and the left and right occipitalface areas (lOFA and rOFA). BOLD sig-nals were analyzed in two ways—univar-iate amplitude analysis and multivariatepattern analysis (MVPA). For the univari-ate amplitude analysis, in each ROI,BOLD signal amplitudes for the 0�,30�,and 60�face views were estimated witha general linear model (GLM) (Figure S1A) and were then usedto calculate the learning modulation index (LMI) for BOLDamplitude as follows: [Amp (trained view posttraining)22[Amp (untrained viewsposttraining)2Amp (untrained views pretraining)] [10, 23].The mean amplitude for the 0�and 60�views served as theamplitude for the untrained views. The LMI quanti�ed the ampli-tude difference for the trained view before and after trainingwhile subtracting out the difference for the untrained views.By contrasting the differences for the trained and the untrainedviews, the LMI measure isolated those effects speci�c to thetrained view and the trained task and distinguished thesefrom general practice effects or common sources of variance(e.g., day-to-day measurement variance, stimulus repetition).An index signi�cantly above zero indicates that trainingenhances the BOLD signal to the trained view. At Post1, theindices at the lFFA and rFFA were signi�cantly greater thanzero (both t(17) > 3963, p < 0.05). At Post2, the lOFA and rFFAshowed a signi�cantly positive index (both t(17) > 3.20, p <0.05) (Figure 2A). These results showed that training boostedcortical response at some ROIs. In particular, the boost at therFFA lasted 1 month, which was parallel to the behaviorallearning effect.Are the BOLD signal enhancements at the lOFA, lFFA, andrFFA closely associated with the persistent learning effect?To investigate this issue, for these three areas, we calculatedthe correlation coef�cients between the psychophysicallearning index and the LMI for BOLD amplitude at Post1 andPost2 across individual subjects. Similar to the LMI for BOLDamplitude, we de�ned the psychophysical learning index as[Thr (trained view pretraining)2Thr (trained views posttrain-
right) (Figure 1C). QUEST staircase [22] was used to control
the orientation difference between the two views adaptively
for estimating subjects’ face view discrimination thresholds
(75% correct).Throughout the training course, their thresholds
gradually decreased and saturated after day 6 (Figure 1D).

During the three test phases, psychophysical and MRI tests
were performed. We first measured face view discrimination
thresholds at the orientations of 0�, 30�, and 60�, similar to
the training phase. Relative to Pre, the discrimination thresh-
olds at Post1 and Post2 were significantly lower for the trained
view (i.e., the30� view;both t(17) >11.79,p<0.001), but showed
little change for the untrained views (i.e., the 0� and 60� views;
all t(17) < 2.13, p > 0.05) (Figure 1E).This result demonstrated
that training led to a significant learning effect, which was spe-
cific to the trained view and persisted up to 1 month.

fMRI Results

After acquiring the thresholds, we measured blood-oxygena-
tion-level-dependent (BOLD) signals responding to the three
face views in 18 fMRI runs. Each run consisted of three 12 s
stimulus blocks, one for each view, interleaved with three
18 s blank intervals. Each stimulus block contained five trials.
The trials and subject’s task were very similar to those in the
psychophysical tests except that the orientation difference
of two views in a trial was the discrimination threshold
measured in the preceding psychophysical test, which caused
subjects to perform equally well across blocks and tests.

The first purpose of experiment 1 was to investigate whether
or not there was any long-term neural change associated with
the persistent behavioral learning effect. We focused the data
analyses on BOLD signals in several regions of interest (ROIs),
which were face selective areas and early visual cortex (EVC,
consisting of V1 and V2; see the Supplemental Experimental
Procedures available online). Face selective areas included
the left and right fusiform face areas (lFFA and rFFA), the left
ing)]2[Thr (untrained views pretraining)2Thr (untrainedviews posttraining)], where Thr is the face view discriminationthreshold measured at the test phases. The larger the index,the greater the behavioral learning effect. No signi�cantNeural Mech anisms of Face Perceptual Learning



correlation was found (all abs(r) < 0.26, p > 0.05), suggesting
that these areas might not play an important role in the face
learning. These results do not support the view that focal
changes in the strength of neural responses to trained stimuli
are critical mechanisms for perceptual learning.

The multivariate pattern analysis was a standard correlation
analysis of spatial activity pattern [24]. For each ROI, we
computed the correlation coefficient between the spatial activ-
ity patterns evoked by the same face view in different runs
(Figure S1B). We defined the LMI for pattern correlation as
[Coef (trained view posttraining)2 Coef (trained view pretrain-
ing)] 2 [Coef (untrained views posttraining) 2 Coef (untrained
views pretraining)]. An index significantly above zero indicates
that training improves the stability of the spatial activity pattern
evoked by the trained view. We found that only the lFFA ex-
hibited a significantly positive index at both Post1 and Post2
(both t(17) > 3.16, p < 0.05) (Figure 2B), demonstrating that
the improved stability of the spatial activity pattern in the
lFFApersistedover the long timecourseofperceptual learning.

The MVPA performed above used a single statistical
threshold to define the ROIs, which usually had different
numbers of voxels. It is likely that the correlation coefficient
in an ROI was affected by its voxel number. To rule out this
explanation, for each subject, we adjusted the thresholds for
the rFFA, rSTS, lSTS, rOFA, lOFA, and EVC individually to
ensure that they had the same voxel numbers as the lFFA
(the mean voxel number in the lFFA across subjects was 73).
With these redefined ROIs, we performed the same analysis.
None of these areas exhibited a significantly positive LMI at
Post1 and Post2 after ROI resizing (Figure S2A).

To further evaluate the role of the improved lFFA pattern sta-
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(Figure S2B). The null result in EVC also excludes the possibil-
ity that the observed learning effect here could be due to some
kind of feature learning, which is consistent with our previous
psychophysical findings [19].

Cortical Thickness Results
The second purpose of experiment 1 was to explore the struc-
tural correlates of the face view discrimination learning.
Because of the close relationship between brain structure
and brain function, it is natural to ask whether or not, after
training, there was any structural change accompanying the
functional change in the lFFA, as well as in the other ROIs. In
each test phase, subjects’ structural images were acquired
before the fMRI runs. Wemeasured the thickness of the cortex
before and after training, as cortical thickness is a sensitive in-
dex of brain plasticity [31, 32]. To remove the fluctuation in the
average thickness of the whole cortex among different scan-
ning sessions, we subtracted the average thickness in each
session for each subject from the original thickness of each
vertex. All the subsequent analyses were based on the relative
cortical thickness. We found that the average cortical thick-
ness for each ROI did not change after training (all t(17) <
1.40, p > 0.05) (Figure 3A). We then searched thewhole cortical
surface and still found no reliable change in cortical thickness.
This result was in sharp contrast with previous learning studies
in other functional domains, in which
regional increases in cortical thickness
were detected after memory, music,
language, or navigation training [14–17].
Although there was little cortical

thickness change after training, a sur-
prising finding in our analysis was that
the cortical thickness of the lFFA before
training (at Pre) was predictive of the
behavioral learning effect across indi-
vidual subjects. Figure 3B shows an in-
verse correlation between the cortical
thickness of the lFFA and the average
psychophysical learning index of Post1
and Post2 (r = 20.70, p < 0.01). In other
words, the thinner the cortex of the
lFFA, the greater the behavioral learning effect. Other ROIs
did not show a significant correlation (all abs(r) < 0.49, p >
0.05) (Figure S3B). It is important to note that, before training,
the cortical thickness of the lFFA did not correlate with the
discrimination threshold for the trained view (r = 20.15, p =
0.565). This observation ruled out a possible explanation that
the thinner lFFA cortex caused a lower performance before
training and therefore allowed more room for improvement.
We further searched the entire cortical surface and computed
correlations between the cortical thickness of each vertex and
the average psychophysical learning index. Figure 3C shows
vertex-based, correlational maps across the entire cortical
surface depicting the topography of significant correlations
at a statistical threshold of p < 0.01 (uncorrected). The area
showing the strongest correlation was in the left fusiform
cortex (peak vertex: r = 20.73, p < 0.001; Talairach coordi-
nates: 250, 248, 217), which was strikingly overlapped with
the lFFA defined by the functional localizer (Talairach coordi-
nates: 241, 246, 214). Two additional regions were detected
by this analysis, the right parahippocampal gyrus (peak vertex:
r = 0.71, p < 0.001; Talairach coordinates:13, 249, 4) and the
right anterior cingulate cortex (peak vertex: r = 20.70, p <
0.01; Talairach coordinates: 6, 31, 25). Thus, this unbiased,
post hoc approach supported the specificity of our ROI find-
ings to the lFFA.
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The inverse relationshipbetween thecortical thicknessof the
lFFA and the behavioral learning effect is counterintuitive. It
challenges a common assumption that a greater cortical thick-
ness is associated with better processing efficacy of that re-
gion [18]. Shaw et al. [31] found a negative correlation between
IQ and cortical thickness in early childhood. In agreement with
our study, children who had thinner cortex in frontal regions
gained more in an intelligence measure. Although the micro-
structure and cellular events contributing to cortical thickness
are largely unknown, a compelling explanation of our finding is
cortical pruning. Cortical pruning is a process of removing inef-
ficient synapses and neurons, especially during adolescence
[33]. It is conceivable that thinner cortex as a consequence of
cortical pruning leads to more efficient processing, as well as
strong learning ability. We further speculate that the thinner
lFFA cortex, after training, could become more functionally
stable because of fewer inefficient synapses and neurons,
consequently leading to a greater behavioral learning effect.
The significant correlation between the cortical thickness and
the average LMI for pattern correlation of Post1 and Post2 at
the lFFA (r = 20.49, p < 0.05) (Figure 4) provides tentative
evidence for this idea and suggests a close correspondence
between cortical thickness and increased brain function.

Control Experiments
Experiments 2 and 3 were designed to investigate whether the
neural changes found in experiment 1 depend on subjects’
attention to the face stimuli and the face view discrimination
task. These two experiments were identical to experiment 1
except that subjects performed a luminance discrimination
task at fixation (instead of the face view discrimination task)
in the fMRI tests (experiment 2) or during training (experi-
ment 3). In an fMRI test trial of experiment 2, fixation point
was presented at two different luminances during the presen-
tation intervals of two face views. Subjects needed to judge
which interval contained a brighter fixation point. In a training
trial of experiment 3, subjects performed the same task.

In experiment 2, the face view discrimination training led to a
similar behavioral learning effect as that in experiment 1. Rela-
tive to Pre, the discrimination thresholds at Post1 and Post2
were significantly lower for the 30� view (both t(14) > 7.43,
p < 0.001), but showed little change for the 0� and 60� views
(all t(14) < 3.06, p > 0.05) (Figure S2C). In experiment 3, because
subjects were trained with the luminance discrimination task,
after training, subjects’ face view discrimination performance
showed little improvement for all the three face views
(all t(11) < 1.58, p > 0.05) (Figure S2D). In both experiments,
LMIs for BOLD amplitude and pattern correlation were not
significantly greater than zero in any ROI at Post1 and Post2
(experiment 2: all t(14) < 2.36, p > 0.05, Figure S2C; experiment
3: all t(11) < 3.28, p > 0.05, Figure S2D). These results demon-
strated that only exposure to the trained view (without per-
forming the face view discrimination task) during training and
test was not able to induce the neural changes observed in
experiment 1.
We also performed the cortical thickness analysis with the

anatomical data in experiments 2 and 3. In experiment 2, a
significant correlation between the cortical thickness and the
average psychophysical learning index of Post1 and Post2
was found only in the lFFA, but not other ROIs (Figure S4A).
Before training, the cortical thickness of the lFFA did not corre-
late with the discrimination threshold for the trained view in
both experiment 2 (r = 20.11, p = 0.685) and experiment 3
(r = 20.10, p = 0.753). The cortical thickness analyses above
were performed with the relative cortical thickness data. It
should be noted that these findings can be replicated with
the raw cortical thickness data (Figures S4B and S4C). Taken
together, these results strengthen the cortical thickness
conclusion in experiment 1.

The Role of the Left Fusiform Cortex in Face Processing

Our finding that both the function and structure of the left fusi-
form cortex are closely associated with the long-lasting effect
of face view discrimination learning has important implications
on face processing and its plasticity. Using fMRI adaptation
and MVPA methods, previous studies [34, 35] have demon-
strated that face views are represented in the FFA and STS.
But it was unknown whether and how the neural representa-
tion of face views can be shaped by visual experience. The
current study provides strong and converging evidence that
the face view representation is plastic even in the adult brain
and suggests that the lFFA plays a pivotal role in adaptive
face view processing.
Our findings shed new light on the hemispheric asymmetry

in face processing. Although the essential role of the rFFA in
face recognition has been extensively documented in litera-
ture over the past few decades [36], we still know little about
the exact function of the lFFA and the functional difference
between these two areas. Recently, Meng and colleagues
[37] proposed that the lFFA performs the graded analyses of
faces, while the rFFA performs the categorical analyses.
They also found that the lFFA ismore susceptible to contextual
information than the rFFA. Based on the findings of the current
study, we argue that the lFFA is more susceptible to percep-
tual learning and is more plastic than the rFFA. Our view is in
line with two recent event-related potential studies. First, Ros-
sion et al. [38] found that training with novel objects (i.e., Gree-
bles) led to a left-lateralized facelike N170 response. Second,
Su et al. [39] showed that perceptual learning could shorten
theN170 latency only at the left occipital-temporal area. Why
is the lFFA more plastic than the rFFA? A possible explanation
is that the rFFA in the adult brain has fully developed and its
function is fixed after maturation [40], while the lFFA is still
open to changes for adapting to the dynamic visual world.
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It should be noted that, although we emphasize the impor-
tance of the lFFA in perceptual learning of faces, we cannot
deny potential contributions from other cortical areas (e.g.,
rFFA). In future research, it would be interesting to examine
whether there is any brain network serving for the face percep-
tual learning. It is possible that the lFFA is a part of this network
and the observed neural effect is most prominent in this area.
Also, other kinds of face learning (e.g., identity learning) should
be investigated to further clarify the plasticity of the lFFA and
other relatedareas,aswell as thebrainnetwork for face learning.
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