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Abstract We propose a computational model which com-
putes the importance of 2-D object shape parts, and we apply
it to detect and localize objects with and without occlusions.
The importance of a shape part (a localized contour fragment)
is considered from the perspective of its contribution to the
perception and recognition of the global shape of the object.
Accordingly, the part importance measure is defined based
on the ability to estimate/recall the global shapes of objects
from the local part, namely the part’s “shape reconstructabil-
ity”. More precisely, the shape reconstructability of a part
is determined by two factors–part variation and part unique-
ness. (i) Part variation measures the precision of the global
shape reconstruction, i.e. the consistency of the reconstructed
global shape with the true object shape; and (ii) part unique-
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ness quantifies the ambiguity of matching the part to the
object, i.e. taking into account that the part could be matched
to the object at several different locations. Taking both these
factors into consideration, an information theoretic formula-
tion is proposed to measure part importance by the condi-
tional entropy of the reconstruction of the object shape from
the part. Experimental results demonstrate the benefit with
the proposed part importance in object detection, including
the improvement of detection rate, localization accuracy, and
detection efficiency. By comparing with other state-of-the-
art object detectors in a challenging but common scenario,
object detection with occlusions, we show a considerable
improvement using the proposed importance measure, with
the detection rate increased over 10 %. On a subset of the
challenging PASCAL dataset, the Interpolated Average Pre-
cision (as used in the PASCAL VOC challenge) is improved
by 4–8 %. Moreover, we perform a psychological experi-
ment which provides evidence suggesting that humans use
a similar measure for part importance when perceiving and
recognizing shapes.

Keywords Shape part · Part importance ·
Shape reconstruction · Object recognition and detection

1 Introduction

Many convincing psychological evidences suggested that
object parts play a significant role in object perception and
recognition e.g. (Hoffman and Richards 1984; Siddiqi BK
and Tresness 1996; Biederman 1987; Biederman and Cooper
1991). These research results motivated a lot of studies
on part-based object representation e.g. (Epshtein and Ull-
man 2007; Dubinskiy and Zhu 2003; Gopalan et al. 2010),
and part-based models have been widely used and con-
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firmed to be successful in many computer vision applica-
tions, such as object recognition and classification e.g. (Zhu
et al. 2010; Crandall and Huttenlocher 2006; Mikolajczyk et
al. 2004).

Part models can be generally classified into two major
categories, the appearance-based e.g. (Bouchard and Triggs
2005; Felzenszwalb and Huttenlocher 2005; Schneiderman
and Kanade 2004) and shape-based models e.g. (Shotton et
al. 2008; Opelt et al. 2008; Sala and Dickinson 2010). In this
paper we study the shape-based part models, in particular
2D contour parts. Although 2D shape and shape part models
have attracted much attention and made great progress in a
broad range of fields, such as psychology, neuroscience and
computer vision, there are still some questions which deserve
further study, in particular:

“Are shape parts of equal importance to a certain visual
task? And how to quantitatively measure the importance of
different parts?”

To pursue the answers to these questions, we investi-
gate the role that parts play in the tasks of shape percep-
tion and object recognition. Psychological studies have dis-
covered that shapes are perceived to be generated in terms
of their constituent parts (Hubel and Wiesel 1962) and dif-
ferent shape parts provide different retrieval cues for shape
perception; their abilities to recall object contours are quite
different (Bower and Glass 2011). In addition, even with
a partial shape (for example, due to occlusion), the human
visual system has a powerful reconstruction ability to com-
plete the global shape (Rensink and Enns 1998). Biederman
(Biederman 1987) further demonstrated that object recogni-
tion is implemented by the Principle of Componential Recov-
ery, i.e. objects can be quickly recognized by certain parts;
and the parts prime (facilitate or speed up) the recognition
process.

This motivates us to propose a mathematical model of part
importance from a new perspective – a part’s shape recon-
structability, i.e. the ability of a part to recall, or recover,
the global object shape. This measure of part importance
is applied to a range of vision problems in object detec-
tion and representation. In particular, it offers an approach
to the unsolved problem of identifying partially occluded
objects.

In order to compute the shape reconstructability of a
part, we propose an efficient shape reconstruction algo-
rithm from a local 2D contour fragment under the Bayesian
framework. The part provides a local observation (which
gives a partial constraint on the global shape) and a class-
specific shape model is learned as a prior model (i.e. a global
constraint) which can be combined to estimate the global
shape.

The shape reconstructability of a part is determined by two
factors, the shape variation of the part and the uniqueness of
the part with respect to the other parts of the object class.

(i) Part variation decides the reconstruction quality, i.e. the
consistency of a recovered global shape with the object shape
model. As shown in Fig. 1a and 2a, the heads of swans have
less variation compared with the tails. When using a head
part to recover a whole swan shape, we obtain a much bet-
ter reconstruction than that when using a tail part (as shown
in Fig. 1b). (ii) The part uniqueness, i.e. the ambiguity of
matching the part to the object contour, which is higher if the
part can be matched at several different locations along the
object contour. This factor determines the uncertainty of the
shape reconstruction from this part. For example, as shown
in Fig. 1a, the flat part is much less unique compared with
the head part. In consequence, it generates a greater number
of high-quality reconstructions at different matching loca-
tions along the object contour compared with the head part
(Fig. 1c). This leads to a larger reconstruction uncertainty.
In summary, a shape reconstruction from a part with higher
quality and less uncertainty suggests that the part is more
important. Therefore, both factors are embodied by a condi-
tional entropy formulation, and the part importance measure
is defined accordingly.

We do extensive experiments on object detection/ recog-
nition which demonstrate the advantage of integrating the
proposed part importance measure into current approaches to
object detection. In the voting-based object detection frame-
work, part importance is used to weigh the votes for object
candidates. For object candidate verification, we use part
importance in two ways. Firstly, in backward shape matching
of localizing object boundaries (as in (Ferrari et al. 2009)),
the learned part importance is used to infer matching corre-
spondences of shape parts, as well as to weigh the match-
ing costs (e.g., matching distance and non-correspondence
penalties). Secondly, we train the weights of an SVM classi-
fier e.g. (Riemenschneider et al. 2010)), using an “impor-
tance kernel” whose design is based on part importance.
Experimental results show that both methods using part
importance improve the object detection rate and localiza-
tion accuracy. Especially on a subset of the challenging PAS-
CAL dataset, the Interpolated Average Precision (Evering-
ham et al. 2010)(as used in the PASCAL VOC challenge) is
improved by 4 ∼ 8 %.

In particular, there is a considerable improvement of the
detection rate, over 10 %, when using part importance in a
particularly challenging real scenario – object detection with
occlusion. We test on two types of occlusion datasets. The
first contains images with naturally occluded objects col-
lected from the Internet. The second is an artificial occlusion
dataset obtained by adding occluding masks to images from
conventional object detection datasets. This artificial dataset
is used to evaluate the model performance under controlled
amounts of occlusion conditions.

In addition, we show that using part importance for object
detection helps improve computational efficiency. One can
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Fig. 1 Shape reconstruction
from parts. (a)Three part
instances (in black) and their
matching locations (in blue) on
an object shape (the green
contours). (b) The reconstructed
shapes (in pink) from matching
the black part instances in (a) to
the corresponding blue
segments on a swan shape. It
uses this local matching as local
constraint and the learned object
model as global prior. (c)
Reconstruction scores at
different matching locations.
The peaks are pointed to at
which matching locations the
shapes are reconstructed (Color
figure online)

Fig. 2 Learning parts and locating part instances on objects. (a) Part
candidates (in black) are extracted from aligned and normalized object
contours. They are clustered into canonical parts (in bold blue). (b)
Matching canonical parts to object instances (black contours) in order
to extract part instances. The dots in different colors denote the contour
points of different parts, and the dotted lines indicate the matching. The
bottom rectangles contain examples of extracted part instances (Color
figure online)

select a set of important parts to accelerate the candidate
voting process and reduce the computational cost without
losing much detection accuracy.

Finally, we perform a psychological experiment to eval-
uate whether humans use the part importance measure. Our
experiment is inspired by previous studies (Biederman 1987).
A contour part is shown before the complete object contour
is displayed. The presentation of the contour part is used to
prime the shape recognition process. The response time of
recognition is used to measure part importance of the human
subjects. It is demonstrated that our method for calculating
part importance are much more consistent with the human
data than previous computational models.

This paper stresses the importance of parts within one
object class. For example, we compare the importance of
the swan neck versus the swan back. In other words, we
consider the contributions of parts to shape reconstruc-
tion/perception/recognition of their own category, rather than
trying to distinguish between different object classes. By con-
trast, the discriminative learning approaches much studied
in the computer vision literature, reviewed in Sect. 1.1.3,
always involve more than one object class, and hence can
be heavily affected by the training datasets. For instance, the
importance of parts for differentiating between a zebra and
a giraffe can be quite different from that for differentiating
between a zebra and a car. Thus, the importance of parts for
discrimination will depend on the set of object classes being
considered. By contrast, our approach is based on the per-
spective of single object classes and so it is less sensitive
to variations on the dataset. We argue that this is important
for dealing with practical computer vision applications such
as object recognition/detection for a very large number of
classes.

123

Author's personal copy



244 Int J Comput Vis (2014) 108:241–258

1.1 Related Work

1.1.1 Contour-Based Object Recognition

Shape/contour-based object detection is a classical problem
and remains a very active research topic in computer vision.

In most of state-of-the-art methods, one of the key issues
is to study effective shape features/representations for object
recognition. In the literature, there have been many pop-
ular shape features and representations, e.g. shape context
(Belongie et al. 2002), the k-Adjacent-Segment (kAS) fea-
tures (Ferrari et al. 2008) and the medial axis based rep-
resentations (Sharvit et al. 1998; Bai and Latecki 2008).
A part-based shape model of k-segment groups was pro-
posed in (Ravishankar et al. 2008), in which the curve seg-
ments were generated by cutting at high curvature points.
In (Shotton et al. 2008) and (Opelt et al. 2008) the authors
learned class-specific codebooks of local contour fragments
as the part-based representation of objects. In (Luo et al.
2010) contour segments were quantized with three types of
distance metrics (procrustes, articulation and geodesic dis-
tance metrics), and spanned into a number of part manifolds.
A user-defined vocabulary of simple part models was pro-
posed in (Sala and Dickinson 2010) to group and abstract
object contours in the presence of noise and within-class
shape variation. (Lin et al. 2012) employed shape struc-
ture learning based on the and-or Tree representation. (Wang
et al. 2012) suggests a Fan shape model in which contour
points were modeled as flexible rays or slats from a refer-
ence point. In (Yarlagadda and Ommer 2012), the codebook
contours were generated by clustering based on the contour
co-activation (considering both the contour similarity and
the matching locations), and then the co-placements of all
the codebook contours were learned by max-margin multi-
ple instance learning to obtain a discriminative object shape
model.

Another crucial issue in contour-related methods concerns
developing efficient shape matching algorithms. A set-to-set
matching strategy is adopted in (Zhu et al. 2008) to utilize
shape features with large spatial extent and capture long-
range contextual information. Also, a many-to-one contour
matching from image contours to object model was pro-
posed in (Srinivasan et al. 2010). Partial shape matching is
especially important in real and clutter images. In (Riemen-
schneider et al. 2010) an efficient partial matching schema
was introduced, using a new shape descriptor of the chord
angles. The method was further improved in (Ma and Latecki
2011) by the developed shape descriptor and the maximum
clique inference to group the partial matching hypotheses.

Different detection framework have been suggested as
well. One of the most popular strategies is the voting-based
methods, such as in (Ommer and Malik 2009; Yarlagadda et
al. 2010; Ferrari et al. 2009). Some others proposed to solve

the detection problem by contour grouping, e.g. (Lu et al.
2009).

In the literature, there has been limited research con-
cerning the roles that different contour parts play in object
detection. One notable exception is the work (Maji and
Malik 2009) which proposed a discriminative Hough trans-
form for object detection in which the a set of importance
weights are learned in a max-margin framework. However,
one of the main differences of our work compared with (Maji
and Malik 2009) was that our generative part importance
derived from the shape perception viewpoint, focused on
the parts’ different contributions to the class-specific object
model, rather than their discriminative abilities across differ-
ent classes. Besides, the advantages of our model include that,
the proposed generative part importance is more robust to
the variation of training data sets. Hence, the generative part
importance has greater generalization ability. In addition, it
is favored by psychological experimental results, which is
shown in Sect. 5.

1.1.2 Toward Shape Part Importance

Although previous researches have made some progress
toward shape part importance, the computational aspect of
shape part importance is still understudied.

Some measures were proposed based on simple local geo-
metric characteristics of shapes. For example, the curvature
variation measure (CVM) for 3D shape parts (Sukumar et
al. 2006), in which the entropy of surface curvature was pro-
posed, and parts with large entropy were considered informa-
tive. Another measure based on the edgelet orientation dis-
tributions was suggested in (Renninger et al. 2007) to model
the information of each location along the 2D shape contours.
The edge orientations (discretized in eight orientations) of a
local part were computed, the histogram (or probability dis-
tribution after normalization) of different edge orientations
was calculated, and the entropy of the edge orientation dis-
tribution was adopted to measure the informativeness of this
location. Nevertheless, the measures based on local charac-
teristics might have some limitations, e. g., the repetitive parts
might not be important even if they were of high entropy of
local curvature variation or edgelet orientation distributions.
The limitations were greatly improved in our model which
embodies both the local shape variation and the uniqueness
of a part.

Additionally researchers suggested that global informa-
tion should be considered. For example, the authors (Hoff-
man and Singh 1997) proposed three factors that determined
the shape part importance – the relative size, protrusion
degree and boundary strength. However, specific computa-
tional model was lacking in the work.
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1.1.3 Feature Weighting

In a broader view, part importance evaluation is closely
related to the literature on feature weight learning. For exam-
ple, the minimax entropy framework (Zhu et al. 1998) learned
a generative model of texture by selecting features weights
by learning-by-sampling. Kersten et al. (Kersten et al. 2004)
suggested a general principle to determine feature weights
based on a Bayesian framework. Features with more reli-
able information had higher weights attributed to their cor-
responding prior constraint. Our observation is that, in addi-
tion to Kersten et al.’s principle, (which corresponds to the
first factor of part variation and reconstruction quality), the
feature/part uniqueness factor should also be taken into con-
sideration.

By contrast in the discriminative paradigm, feature weight-
ing mechanisms are often automatically embodied. For
instance, the RELIEF algorithm weighs features according
to the information gain based on the nearest “hit” and nearest
“miss” (the two nearest neighbors of the positive class and
negative class) (Kira and Rendell 1992). Boosting and its
variants learn weights of weak classifiers (taken as features)
according to classification error rate in an iterative procedure.
In maximum margin based models, kernels are implicit fea-
tures, and the notion of margin corresponds to the weights of
the implicit features e.g. (Cai et al. 2010). Feature weights are
formulated in the potential functions in conditional random
field (CRF) models e.g. (Schnitzspan et al. 2010). Addition-
ally, there are discriminative feature selection methods using
simple criteria such as feature statistics e.g. (Ullman 2007)
or certain utility functions e.g. (Freifeld et al. 2010). But it
is known that the discriminative methods are subject to the
positive and negative classes. Hence model generalization
ability is generally inferior to that of generative models.

The rest of the paper is organized as follows. In Sect. 2
we present the shape part importance formulation, which is
based on a proposed shape reconstruction approach in Sect. 3.
Then we show how to apply the proposed part importance to
object detection (Sect. 4). Section 5 demonstrates psycholog-
ical experiments which support our model. Finally, Sect. 6
concludes the paper.

2 Shape Part Importance

We introduce the problem formulation and computation of
part importance in this section.

2.1 Problem Formulation

We focus on the importance evaluation of 2D object shape
parts, i.e. the contour-based parts of an object category. The
specific object and part representations are introduced later
in Sect. 2.2.1.

The importance of a part is measured by its recon-
structability of the object shape, which is determined by (i)
part variation, which decides the reconstruction quality; and
(ii) the part uniqueness, which depends on whether a part
can be matched to the object at different locations on the
object contour. Taking these two issues into consideration, we
define a conditional entropy formulation which describes the
uncertainty of shape reconstruction induced by the matching
location ambiguities and the reconstruction problem itself.

HΠ(Y, L|XΠ ;O) = −
∫ ∫ ∫

p(XΠ ;O)p(Y, L|XΠ ;O)

· log p(Y, L|XΠ ;O)d XΠdY d L , (1)

where XΠ represents the shape of a part, O denotes the shape
model of an object category, Y denotes recovered object
shapes, and L denotes the matching location of the given
shape part on the object shape. p(XΠ ;O) is the prior of the
part.

p(Y, L|XΠ ;O) = p(Y |XΠ, L;O)p(L|XΠ ;O) (2)

where p(Y |XΠ, L;O) represents the reconstruction proba-
bility given part XΠ when it is matched to a location, and
p(L|XΠ ;O) is the probability of such matching.

The reconstruction problem is formulated as a Maximum
a Posteriori (MAP) estimation. Given the contour part XΠ
as the observation, and the object shape model O, the goal is
to infer the most probable reconstructed shape. The specific
solution is introduced in Sect. 3.1.

In the above conditional entropy formulation, the part
variation affects the reconstruction quality and the probabil-
ity p(Y |XΠ, L;O). Meanwhile the part uniqueness greatly
determines the uncertainty of the reconstruction and the
entropy H . Even if a part has low variability and is able
to recover an object shape nicely, but if it is does not have
a unique match and produces many good reconstructions at
different correspondence locations, such as the flat fragment
in Fig. 1, the uncertainty of the shape reconstruction is still
high so that the part cannot be considered to be “important”.
In contrast, an important part generates only a very small
number of good reconstructions.

2.2 Implementation

Here we go into the details of our computations of Eq. 1. First
of all, we should define the object models and part-based
representation. For 2D shapes, there are some key problems
involved, such as shape variation (deformation and transfor-
mation), viewpoint and articulation. In this paper, we mainly
focus on shape variation, and learn different object and part
models with respect to different viewpoints, just as the pop-
ular way in the literature. Articulation is not modeled in the
current version; it is a challenging problem and discussed in
some literature e.g. (Ion et al. 2011).
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2.2.1 Object and Part Models

To learn the shape model of an object category, a set of object
contour instances of the category is utilized as training data,
e.g. the labeled object outlines from the ETHZ dataset (Fer-
rari et al. 2006). An object contour Y is represented by a set of
contour points (the object center as the origin), first, the object
contour instances of the category {Yi }, i ∈ {1, ..., n} are
aligned in location and orientation, and normalized in scale.
The alignment is based on the TPS-RPM shape matching
algorithm (Chui and Rangarajan 2003), which infers the point
correspondences between object contours. Consequently, the
object shape model is learned by the ASM method (Cootes
et al. 1995), assuming Y follows a normal distribution

p(Y ;O) ∼ N (TO, �O), (3)

where TO is the mean object shape, �O is the covariance
matrix of the contour points.

A part refers to a localized fragment on the object contour.
Considering different shape variations of a part, we make use
of all the part instances extracted from the object instances.
There are two key issues of part-based representation: (I)
how to learn object parts, and (II) how to use the learnt part
models to extract part instances of an object. In the following,
we introduce these two issues in details.

(I) A number of part candidates are extracted from object
contours; then, the candidates are clustered into several
groups, each group corresponds to a “part”.

To extract part candidates from object contours, many suc-
cessful methods in literature can be adopted, e.g.,
(Shotton et al. 2008; Opelt et al. 2008). To demonstrate
that our part importance model is generally applicable to the
contour-based representation (or not limited to a particular
part generation method), we take two approaches as exam-
ples. One is the kAS (k-Adjacent Segments) detector (Ferrari
et al. 2008), which finds short line segments and generates
local shape configurations by combining k adjacent segments
(k = 1, 2, ...). We extract kAS-based parts on the objects of
the ETHZ (Ferrari et al. 2006) and INRIA-horses (Jurie and
Schmid 2004) datasets. The other is the convex shape decom-
position (Liu et al. 2010), which cuts a shape into segments
under concavity constraints. We extract this type of parts
on the objects of the MPEG-7 and PASCAL datasets (Ever-
ingham et al. 2010). For both methods, part candidates are
extracted from the aligned and normalized object contours.

Denote the obtained part candidates as π̃i = (l̃i , X̃i ),
i ∈ {1, ..,m}, where l̃ and X̃ are the relative location of
the part center and part contour points respectively, in the
coordinate system with the object center as the origin. Then
the part candidates are clustered (as in (Ferrari et al. 2009;
Luo et al. 2010)) according to their similarities in shape and
relative position. Consequently, a set of canonical parts are
generated from each cluster, Πi = (li , Xi ), i ∈ {1, ..., N },

where li = 1
|Ci |

∑
j∈Ci

l̃i , and Xi = 1
|Ci |

∑
j∈Ci

X̃ j (Ci is a
cluster of part candidates). Some extracted part candidates
and the clustering results are shown in Fig. 2. Notice that
there is no limitation to the lengths of parts.

(II) The instance of part Π is extracted by matching the
contour points X of Π to each object contour instance at
the part’s canonical location l, using the method in (Riemen-
schneider et al. 2010). The best locally matched piece XΠ
is taken as the contour fragment of the part instance π =
(l, XΠ). Some extracted part instances are shown in Fig.2
(b).

Note that part instances are identified on the normalized
object contours, from which the part models are learned, thus
there is no scale ambiguity. This process will be used in the
next step to measure part importance.

2.2.2 Computing the Conditional Entropy

To make Eq. 1 computationally feasible, we discretize the
formulation:

HΠ(Y, L | XΠ ;O)
= −

∑
i

∑
l

∑
j

p(XΠ,i ;O)p(Yl j , Ll |XΠ,i ;O)

· log p(Yl j , Ll |XΠ,i ;O) (4)

where {XΠ,i }, i = 1, ..., n is the set of contour fragments
of part Π ’s instances extracted from the training dataset of
a studied class using the method described in Sect. 2.2.1.
p(XΠ,i ;O) is the prior of each part instance, and it is chosen
to be uniform in this paper. Take each part instance as an
observation to reconstruct the complete object shape. The
part is matched to any location of the object model. Here a
discrete set of normalized locations Ll ∈ [0, 1] is uniformly
sampled along the whole object contour with equal spacing.
Yl j
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Fig. 3 Ranked importance of parts (highlighted in blue) on( a) the
ETHZ (Ferrari et al. 2006) and INRIA-horses datasets (Jurie and Schmid
2004), (b) the MPEG-7 shape classes and (c) the PASCAL datasets

(Everingham et al. 2010). The numbers denote the part importance val-
ues which are functions of the conditional entropy, see Eq. 8. The green
contours are the learned mean shapes (Color figure online)

where p(Ll |XΠ,i ;O) is considered uniform. And

p(Y ∗
l |XΠ,i ;O) ∝ p(XΠ,i |Y ∗

l ;O)p(Y ∗
l ;O), (6)

where p(XΠ,i |Y ∗
l ;O) represents the consistency between

the part instance XΠ,i and the corresponding part of the
reconstructed shape Y ∗

l ; and this consistency is measured
based on the L1-norm distance of the two corresponding
parts. p(Y ∗

l ;O) describes how much the MAP shape agrees
with the object shape model. Based on Eq. 3, there is

p(Y ∗
l ;O) ∝ exp{−(Y ∗

l − TO)T�−1
O (Y ∗

l − TO)}. (7)

2.2.3 The Part Importance Measure

The part of lower reconstruction uncertainty is considered of
higher reconstructability, and hence is important.

Accordingly, we define the part importance as

wΠ = 1

1 + exp{c1 HΠ + c2} . (8)

The definition is a non-linear transformation, the logistic
function, where c1 and c2 are two parameters selected to
ensure that the values of the linear term in the exponential
fall into the range (−2, 2) for all object categories. Notice that
the tuning of these parameters will only change the absolute
importance values, but not the relative rankings of the parts.

Figure 3a shows the ranked parts of the ETHZ shape
classes (Ferrari et al. 2006) and INRIA-Horses dataset (Jurie
and Schmid 2004) according to the part importance com-
puted Eq. 8. It worth noticing that some groundtruth outlines
are not complete shapes, e.g. the legs are pruned away from
the outlines of the giraffes. Figure 3b, c show examples on
the MPEG-7 and PASCAL datasets (Everingham et al. 2010)
respectively.

According to Eq. 5, a part importance is computed based
on the reconstruction qualities of all the part instances at all
matching positions along the object contours. Therefore, for
an object category with N parts, the computational complex-
ity is N × n × k, where n and k are the number of each part’s
instances and the number of the sampled matching positions.
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In the following section we will present a detailed shape
reconstruction method, which gives an efficient algorithm
for the implementation of shape reconstruction from partial
observations.

3 Shape Reconstruction

There have been many previous work on shape comple-
tion, for example, amodal completion (Kanizsa and Gerbino
1982), which makes use of heuristics such as local continu-
ities, proximity and global regularities; and curve completion
(Kimia et al. 2003) under the rules such as smoothness or
curvature-based constraints. However, these generic priors
are usually only successful in bridging small gaps of shape
contours; in case of severe occlusions, they are often unable
to recover reasonable estimates of the object shapes. There-
fore, we propose a new shape reconstruction method, which
leverages global shape priors in order to estimate complete
object outlines from a curve fragment (i.e. a part).

3.1 Our Solution

In the 2D space of planer shapes (denoted by �R2 ), given
a contour fragment XΠ of certain part, assuming its corre-
spondence location l on a object shape is known, the goal is
to infer the most probable complete shape contour Y ∗

l with
respect to the object class model O. It is formulated as a MAP
estimation problem under the Bayesian framework.

Y ∗
l = argmaxY∈�R2

p(Y |XΠ, l;O) (9)

= argmaxY∈�R2
p(Y ;O) p(XΠ |Y, l) / p(XΠ ;O)

where p(XΠ ;O) is independent of Y and hence does not
affect Y ∗

l .
We implement this MAP estimation as an energy mini-

mization,

Y ∗
l = argmaxY∈�R2

EG + λEP (10)

where EG is the energy term of the global shape prior
p(Y ;O), and it is used to constrain Y to follow the shape
model of the class as much as possible. Recall that the global
shape prior was described in Sect. 2.2.1 and is a Gaussian
distribution N (TO, �O). Let b be the projection vector of Y
onto the principle components of object class shape space. Y
can be approximated by

Y ≈ TO +Φb. (11)

where Φ is the eigenvectors of the covariance �O. And the
energy term is

EG(b) = bT�−1
O b (12)

Fig. 4 Shape completion examples. The blue contour segments are
the object boundaries not been occluded. The red shapes denote the
reconstructed contours by the proposed shape reconstruction method.
The dotted green curves are the occluded ground truth object outlines.
The regions of chessboard pattern are the occlusion masks (Color figure
online)

EP is the energy term of the likelihood p(XΠ |Y, l). This
term enforces a partial constraint, which imposes a good
matching between the observation XΠ and its corresponding
segment on the reconstructed shape YΠ .

EP (b) = |YΠ(b)− XΠ | (13)

YΠ(b) ≈ TΠ +ΦΠ b. (14)

Equation 14 is derived from the decomposed form of Eq. 11,

Y =
[ YΠ

YΠ ′

]
≈

[ TΠ
TΠ ′

]
+

[
ΦΠ
ΦΠ ′

]
b. (15)

where TΠ and YΠ are the corresponding parts at the matching
location l on the mean shape and the reconstructed shape sep-
arately, and ΦΠ is corresponding submatrix of Φ. TΠ ′ , YΠ ′
and ΦΠ ′ are the rest parts in the decomposition.
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threshold (M is the number of points of the object shape
model). (β1, β2, β3, β4) = (8, 0.2, 0.2, 0.5) for all the object
classes in the experiments.

(II) The Importance Kernel in SVMs
A second verification approach is based on a trained SVM

classifier, which is applied to a window containing an object
candidate. We propose an “importance kernel” for the SVMs.
The kernel is designed as KI ( fi , f j ) = f T

i WI f j , where f
is a feature and WI = wI wT

I , wI is a column vector, in which
each entry is the importance value of a shape part computed
by Eq. 8 It is obvious that WI is positive semi-definite, so that
the kernel is valid and satisfies Mercer’s condition (Shawe-
Taylor and Cristianini 2004).

The feature fi is related to a descriptor in candidate win-
dow. Each contour fragment in the window is matched with
all the parts. The matching score α is computed as in Sect.
4.1.1. We calculate a histogram where each bin counts the
total accumulation of the matching scores for each part. This
histogram is adopted as the descriptor fi . Then, instead of
using the standard linear kernel (Ferrari et al. 2008), we apply
the importance kernel to the SVM classifier.

4.2 Experimental Results

4.2.1 Results on Standard Datasets

On the ETHZ shape dataset (Ferrari et al. 2006), the most
popular benchmark for contour-based object detection, we
use half of the images of each object class for training
and the others for testing, just as the traditional way on
this benchmark. Experiments were conducted using the pro-
posed importance-based object detection with two kinds of
approaches for object candidate verification.

In the hough voting stage (as in Sect. 4.1.1),The votes
are weighted by part importance (Eq. 17) and an accumu-
lated voting score above a preset threshold (0.3 × # object
parts) signifies a candidate object hypothesis. We compare
this bottom-up process with the one without considering part
importance (or identical part weights) in Table 1. Experimen-
tal results show that weighted voting improves the detection

rate. We use the most popular criteria, i.e. the detection rate at
1.0 FPPI, and also compare with other state-of-the-art voting-
based methods as shown in Table 1. The average performance
is comparable to (Riemenschneider et al. 2010). Notice that
two types of ranking process are adopted in (Riemenschnei-
der et al. 2010), one is based on the coverage score of the
matched reference contour; the other is the PMK score based
on a SVM classifier.

For the shape-matching verification (as introduced in Sect.
4.1.2 (I)), it is shown in Fig. 5 that the detection rate vs. false
positives per image (DR/FPPI) is improved by using part
importance compared with that without part importance. For
thorough comparisons with the other state-of-the-arts detec-
tion approaches, Table 2 and 3 show the detection rate at
0.3/0.4 FPPIs and the Interpolated Average Precision (AP)
as in the PASCAL VOC challenge (Everingham et al. 2010)
respectively. It illustrates that our detection rate and the Aver-
age Precision of the ETHZ object classes achieve a compa-
rable result to the-state-of-the-arts e.g. (Lin et al. 2012) and
(Yarlagadda and Ommer 2012) or even better performances
than many recent work. It should be point out that among the
state-of-the-arts shape-based methods, some rely on labeled
contours for training, such as (Wang et al. 2012) and ours, and
some only need weekly supervision such as (Yarlagadda and
Ommer 2012) and (Srinivasan et al. 2010). The more super-
vision could be more helpful to improve the performances.

Figure 6 compares the localization of object boundaries
by the proposed method using part importance (in green)
and those without part importance (in red). It shows that the
method which exploits part importance locates object bound-
aries much more accurately than the method which do not
(an adapted version of (Ferrari et al. 2009) – the differences
in the part-based object model learning is discussed in Sect.
4.1.1). Table 4 shows the boundary coverage/precision crite-
ria as in (Ferrari et al. 2009). The coverage is the percentage
of the ground-truth outline points that have been detected,
and the precision is the percentage of the true positive object
boundary points. The localization accuracies of our shape-
matching-based verification with part importance are also
competitive to the state-of-the-arts, except that (Toshev et
al. 2012) obtained more accurate localization than ours for

Table 1 Comparison of the detection rates of the voting step at 1.0 FPPI

ETHZ
classes

Ferrari et al.
(2009)

Ommer and Malik (2009)
(wac / PMK ranking)

Maji and Malik
(2009)

Riemenschneider et al.
(2010) (Cov/PMK)

Ours without
importance

Ours with
importance

Applelogos 0.430 0.800 / 0.800 0.850 0.904 / 0.904 0.739 0.783

Bottles 0.644 0.924 / 0.893 0.670 0.844 / 0.964 0.778 0.815

Giraffes 0.522 0.362 / 0.809 0.550 0.500 / 0.788 0.778 0.867

Mugs 0.451 0.475 / 0.742 0.550 0.323 / 0.614 0.763 0.790

Swans 0.620 0.588 / 0.686 0.425 0.901 / 0.886 0.688 0.813

Mean 0.533 0.630 / 0.786 0.609 0.694 / 0.832 0.749 0.814
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Fig. 5 Performance comparison of detection rate vs. false positives per image (DR/FPPI) by the different object detectors. In this figure our method
uses voting followed by shape-matching verification (Color figure online)

Table 2 Comparison of the detection rates at 0.3/0.4 FPPI.

Applelogos Bottles Giraffes Mugs Swans Mean

Ours with importance 0.957 / 0.957 0.963 / 0.963 0.867 / 0.867 0.947 / 0.947 1 / 1 0.947 / 0.947

Ours without importance 0.913 / 0.913 0.852 / 0.852 0.701 / 0.701 0.868 / 0.868 0.875 / 0.875 0.842 / 0.842

(Yarlagadda and Ommer 2012) 0.95 / 0.95 1 / 1 0.913 / 0.913 0.967 / 0.967 1 / 1 0.965 / 0.965

(Wang et al. 2012) 0.90 / 0.90 1 / 1 0.92 / 0.92 0.94 / 0.94 0.94 / 0.94 0.94 / 0.94

(Toshev et al. 2012) 0.864 /0.886 0.964 / 0.964 0.813 / 0.868 0.727 / 0.773 0.939 / 0.939 0.861 / 0.886

(Ma and Latecki 2011) 0.92 / 0.92 0.979 / 0.979 0.854 / 0.854 0.875 / 0.875 1 / 1 0.926 / 0.926

(Srinivasan et al. 2010) 0.95 / 0.95 1 / 1 0.872 / 0.896 0.936 / 0.936 1 / 1 0.952 / 0.956

(Maji and Malik 2009) 0.95 / 0.95 0.929 / 0.964 0.896 / 0.896 0.936 / 0.967 0.882 / 0.882 0.919 / 0.932

(Felzenszwalb et al. 2009) 0.95 / 0.95 1 / 1 0.729 / 0.729 0.839 / 0.839 0.588 / 0.647 0.821 / 0.833

(Lu et al. 2009) 0.9 / 0.9 0.792 / 0.792 0.734/0.77 0.813/0.833 0.938 / 0.938 0.836 / 0.851

(Riemenschneider et al. 2010) 0.933 / 0.933 0.970 / 0.970 0.792 / 0.819 0.846 / 0.863 0.926 / 0.926 0.893 / 0.905

(Ferrari et al. 2009) 0.777 / 0.832 0.798 / 0.816 0.399 / 0.445 0.751 / 0.8 0.632 / 0.705 0.671 / 0.72

(Zhu et al. 2008) 0.800 / 0.800 0.929 / 0.929 0.681 / 0.681 0.645 / 0.742 0.824 / 0.824 0.776 / 0.795

Our methods here are voting + shape-matching verification

most ETHZ classes. This is mainly due to their employment
of figure/ground segmentation (Table 4).

Next we evaluate the SVM verification method (introduced
in Sect. 4.1.2 (II)). We compare the performance of the tra-
ditional linear kernel (Ferrari et al. 2008) with the proposed
importance kernel. As shown in Fig. 7 and Table 5, both
the detection rate and localization accuracy are improved by
using the importance kernel. In Table 5 the Bounding Box
Accuracy (BB Accuracy) refers to the average area rate of
the intersection vs. union of the ground-truth bounding boxes

and the detected windows. The result showed that the detec-
tion rate of the SVM-based verification with part importance
was lower than that of the shape matching verification, as
demonstrated by the detection rate at 0.3 / 0.4 FPPI in Table
5 vs. 2, and also the DR / FPPI curves in Fig. 7 vs. 5.

Besides, we test on the PASCAL dataset (Everingham
et al. 2010), which is a much more challenging dataset for
object detection. The proposed part importance measure is
based on two assumptions: (i) Objects should have stable
shape priors. Several object classes are not considered here,
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Table 3 Comparison of
interpolated average precisions
(AP).

Our methods here is voting with
shape-matching verification

Apple-logos Bottles Giraffes Mugs Swans Mean

Our method with importance 0.861 0.902 0.796 0.902 0.953 0.883

Our method without importance 0.856 0.808 0.617 0.813 0.798 0.778

(Lin et al. 2012) 0.909 0.898 0.811 0.893 0.964 0.895

(Wang et al. 2012) 0.866 0.975 0.832 0.843 0.828 0.869

(Ma and Latecki 2011) 0.881 0.920 0.756 0.868 0.959 0.877

(Srinivasan et al. 2010) 0.845 0.916 0.787 0.888 0.922 0.872

(Maji and Malik 2009) 0.869 0.724 0.742 0.806 0.716 0.771

(Felzenszwalb et al. 2009) 0.891 0.950 0.608 0.721 0.391 0.712

(Lu et al. 2009) 0.844 0.641 0.617 0.643 0.798 0.709

Fig. 6 Comparison results of object detection and boundary localization by the method without (Ferrari et al. 2009) (in red) and with (in green)
part importance by the shape-matching verification (Color figure online)

Table 4 Comparison of boundary localization accuracies using the coverage/precision criteria (Ferrari et al. 2009)

Apple-logos Bottles Giraffes Mugs Swans

Our method with importance 0.928 / 0.947 0.876 / 0.893 0.715 / 0.797 0.866 / 0.863 0.828 / 0.849

Our method without importance 0.910/0.925 0.858 / 0.878 0.686 / 0.750 0.841 / 0.834 0.805 / 0.823

(Toshev et al. 2012) 0.918 / 0.975 0.903 / 0.925 0.768 / 0.824 0.865 / 0.905 0.858 / 0.876

(Ma and Latecki 2011) 0.923 / 0.948 0.845 / 0.903 0.456 / 0.784 0.735 / 0.803 0.848 / 0.909

(Ferrari et al. 2009) 0.916 / 0.939 0.836 / 0.845 0.685 / 0.773 0.844 / 0.776 0.777 / 0.772

Our methods here are voting + shape-matching verification

Fig. 7 Performance of detection rate vs. false positives per image. Here the SVM verification with linear kernel (dotted cyan) (Ferrari et al. 2008)
and importance kernel (solid red) are compared. The importance kernel is significantly better (Color figure online)

for example, the potted plants which are basically free form
objects with too large intra-class shape variations, and the TV-
monitors and trains with too simple shapes. (ii) The shape
model is view-dependent, i.e. we learn shape models for dif-

ferent viewpoints and different poses separately. For instance,
three models are learned for the person class (Fig. 3c). This
assumption is consistent with the organization of the dataset.
Considering the above assumptions, we test the proposed part

123

Author's personal copy



Int J Comput Vis (2014) 108:241–258 253

Table 5 Comparisons of detection performances of the linear kernel as
in (Ferrari et al. 2008) and the proposed importance kernel in the SVM
verification

BB Accuracy DR at 0.3/0.4 FPPI

Linear
kernel

Importance
kernel

Linear
kernel

Importance
kernel

Applelogos 0.832 0.849 0.870 / 0.870 0.957 / 0.957

Bottles 0.834 0.907 0.704 / 0.704 0.889 / 0.889

Giraffes 0.769 0.820 0.822 / 0.822 0.911 / 0.911

Mugs 0.808 0.835 0.816 / 0.816 0.921 / 0.921

Swans 0.816 0.832 0.938 / 0.938 1 / 1

importance model on several chosen object classes, which
represent the typical challenges in object detection, e.g. rel-
atively large intra-class shape variation and scale variation,
a considerable degree of occlusion, articulation, and back-
ground clutter. Currently, we have collected images of aero-
plane, bird, bottle, car, cow, horse and person. For the bottle
and person classes, images of the frontal view are collected,
and for the other classes there are images of the left and right
views according to the annotations of PASCAL dataset. In
all, the numbers of images of the training / validation sets are
as follows: 120 / 187 for aeroplane, 82 / 170 for bird, 200 /
224 for bottle, 291 / 318 for car, 102 / 125 for cow, 151 / 182
for horse and 136 / 380 for person.

On this derived dataset from PASCAL dataset, the detec-
tion performances are improved by the method with part
importance (Fig. 8), and the interpolated AP is increased
by 4 ∼ 8 % by using the proposed part importance and
shape-matching-based verification method (Table 6). Notice
that most existing tests on the challenging PASCAL dataset
always make use of other features besides shape contour,
and to the best of our knowledge most contour-based meth-
ods have not tested on PASCAL dataset. For thorough com-
parisons, we show the results of the DPM method (Felzen-
szwalb and Girshick 2010), one state-of-the-arts but not pure
shape-based method (Table 6). Notice that DPM is quite dif-
fident from ours in the overall detection framework as well
as the features used. One advantage of DPM could be the uti-
lization of the HoG features, resulting better performances.
However, our method adopts well-trained shape models with
part importance, and some results are better than DPM, such
as the person class (three models are learned as shown in Fig.
3c).

4.2.2 Part Importance for Occlusion

Occlusion occurs frequently in natural images. It can defeat
most of the state-of-the-art object detection and recognition
methods. Here we show that by integrating part importance
into object detectors greatly improves detection performance
even with severe occlusion.

Fig. 8 Comparison results of object detection on a subset of PASCAL dataset. The top / bottom row showing the results by the method without /
with part importance (Color figure online)

Table 6 Performances on the PASCAL dataset (Everingham et al. 2010)

Aeroplane Bird Bottle Car Cow Horse Person

AP (ours without / with
importance)

0.418 / 0.487 0.351 / 0.395 0.363 / 0.402 0.380 / 0.422 0.354 / 0.441 0.416 / 0.508 0.343 / 0.414

AP (DPM Felzenszwalb
and Girshick (2010))

0.652 0.398 0.428 0.464 0.425 0.539 0.309

BB accuracy (ours without /
with importance)

0.791 / 0.825 0.811 / 0.818 0.783 / 0.797 0.796 / 0.822 0.813 / 0.837 0.772 / 0.806 0.788 / 0.807
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Fig. 9 DR/FPPI comparison on the natural occlusion image datasets
(Color figure online)

Due to lack of datasets for occlusion cases in the literature,
we construct two types of occlusion datasets. The first one
includes images with natural occlusion, downloaded from
the Internet. Currently three object classes: horses, giraffes
and mugs are collected (30 ∼ 50 images for each class). The
second is an artificial occlusion dataset in which we synthe-
size object occlusions by placing occluding bands around the
object outlines. The bands are of lengths a ∗ L E N , where
a = 0.1, 0.2, ..., 0.7, and L E N is the total curve lengths of
the object outlines. The images in this dataset are selected
from the standard dataset. From each image, we generate 10
occlusion images for every a, with the position of the bands
evenly distributed around the object outlines.

We just plug in the learned part importance to the object
detectors obtained from standard datasets (with few occlu-

sion) and apply them to the collected occlusion datasets. In
this way, we justify the advantage of the proposed impor-
tance measure. There is no specific training procedure for
occlusion.

Figure 9 and 10 show the results on the natural occlusion
dataset. We can see that by using part importance the detec-
tion performance is significantly improved compared with
that of state-of-the art methods without part importance such
as (Ma and Latecki 2011) and an adapted version of (Ferrari et
al. 2008). In Fig. 10, we only detect objects whose pose orien-
tations are the same as the object model (as in Fig. 3), e.g. the
horses whose head on the right and the giraffes whose head
on the left. Figure 11 shows the Interpolated AP changes in
different degrees of occlusion. All these experiments demon-
strate the great advantage of exploiting the shape part impor-
tance to handle occlusion.

The running time The time costs of part importance learn-
ing for the ETHZ classes are as follows, applelogos – 0.51 h,
bottles – 0.25 h, giraffes – 0.47 h, mugs – 0.33 h, and swans
0.52 h. The mean value is 0.42 h. For object detection, the
average running time is 95.1 s per image (shape-matching
based method), where the voting stage and post-processing
cost 32.7 and 62.4 s per image respectively. The code is run-
ning in 32-bit Matlab (R2009b) on Core (TM) 2 Duo CPU
@ 3.0 GHz.

4.2.3 Efficiency Improvement

In the section we show that we can achieve fast detection by
using only a small set of important parts. We rank the parts
of each object category according to their learned impor-
tance. The parts participate one by one in the process of
Hough voting for object candidates. Once the voting scores
go beyond a predefined threshold, the voting process stops.

Fig. 10 Object detection & localization on the natural occlusion
dataset (using the SVM verification): the top and bottom rows show the
results of the method without part importance (Ferrari et al. 2008) and
using part importance respectively. The green, red and yellow rectan-

gles denote the true positives, false positives and ground-truth bounding
boxes respectively. The numbers on the top-left corner of boxes are the
output detection scores from SVM (Color figure online)
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Fig. 11 Detection performance
vs. the amount of occlusion. The
blue and red bars represent the
Interpolated APs of the methods
using and not using importance
(Ferrari et al. 2008) respectively.
The envelop curves show the
trend of the Interpolated APs
changing with different degrees
of occlusion (doted blue/cyan:
with/without importance) (Color
figure online)

The number of parts used are recorded, which indicates
how much the computational cost can be saved in find-
ing potential objects. We start at a relatively large thresh-
old; in this case the detection rate may be very low. Then
we gradually lower the threshold, until the performance
achieves a comparable level that using the whole set of
parts.

Table 7 shows the efficiency improvement obtained by
using the ranked parts. We can see that for some object cat-
egories more than half of the parts can be removed without
significant loss of performance. By comparison, if the parts
are added in a random order into the voting process, the effi-
ciency improvement is quite limited. This shows another way
that part importance can benefit object detection.

5 Psychological Experiment

We now perform a psychological experiment to see if humans
use part importance. Our experiment is based on the work
described in (Biederman 1987). In the experiment, a contour
part is displayed before the whole object contour is shown.
Subjects’ task is to name the object as soon as possible. The
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Table 7 Efficiency comparison: using parts ordered by importance versus a random order.

Applelogos Bottles Giraffes Mugs Swans Mean

Number of parts 26 16 20 17 24 20.6

Ordered by importance (Proportions
of parts used / I.A.P. achieaved)

0.470 / 0.852 0.684 / 0.875 0.419 / 0.834 0.706 / 0.868 0.547 / 0.913 0.565 / 0.868

Random order (Proportions of parts
used / I.A.P.achieaved)

0.661 / 0.852 0.767 / 0.875 0.721 / 0.801 0.871 / 0.868 0.706 / 0.903 0.745 / 0.860

I.A.P. stands for Interpolated Average Precision

Fig. 12 Illustration of the psychology experiment procedure. The
numbers denote the duration of displaying each figure

earlier sections. The stimuli from all the object categories
are put together and mixed in a random order. The complete
object contour is displayed in the center of the screen. The
priming part, which is extracted from the object contour, is
allowed to have a small spatial jitter from its original position.
The part is presented for 0.5 s and the whole object outlines
for 2.5 s. There are 30 subjects (for males, the average ages
and standard deviation are 22.7 and 3.2 respectively, and 25.0
and 2.8 for females respectively). It is not necessary to show
the stimuli to subjects in advance, but those common objects
are supposed to be familiar to them. Subjects need to verbally
name the object that is presented. The response time is mea-
sured through voice analysis. Then the importance score of
part i is derived by xi = 1− ti/tmax , where ti is the response
time of part i (the mean value of different subjects, notice that
the values beyond the 95 % confidence interval are ignored),
and tmax is the maximal value of the ti s.

We compare different part importance measures using the
above psychological results as the baseline. The importance
scores of all parts within the object category form a distribu-
tion, D0 = (xi/

∑
i xi , i = 1, ..., N ) (N is the number of the

parts). Let D1 be the distribution from the part importance
measure we propose in this paper, and D2 be that according
to the entropy of local edge orientation distributions by Ren-
ninger et al. (Renninger et al. 2007), in which high entropies
indicate important parts (Both measures are normalized in

Table 8 Comparison of different part importance measures with respect
to human performance

KL dist. Uniform (Renninger et al. 2007) Ours

Apple logos 1.9918 1.5654 0.57511

Bottles 0.71266 0.62263 0.42895

Giraffes 2.6431 1.7164 0.748

Mugs 1.2278 0.8110 0.4592

Swans 2.2567 2.2096 1.9676

Horses 1.4104 1.2498 0.93664

Fig. 13 Heat map illustrations of part importance from (a) psycholog-
ical part importance scores, (b) our model and (c) the measure of edge
orientation distribution (Renninger et al. 2007). The more red the more
important the part (Color figure online)

the same way as D0). In addition, if the parts are consid-
ered to be of equal importance then it corresponds to a uni-
form distribution D3 = 1/N . The differences between the
three measures to the human subject data are shown in Table
8, where we evaluated by the KL divergences between D0

and D1, D2, D3 respectively. Figure 13 shows the heat maps
based on the different measures. The results exhibit that our
model is more coherent to human perception of shape parts
comparing with that based on local features as in (Renninger
et al. 2007).

6 Conclusion

In this paper, a novel method to measure shape part impor-
tance is proposed according to the “shape reconstructability”
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of a part. It is successfully applied to a variety of object detec-
tion and localization tasks and, in particular, in the presence
of severe occlusion. We also perform psychological experi-
ments which show that our model is roughly consistent with
human performance.

Our current implementation of the proposed method still
has some limitations. For example, it is not very robust to
articulation or to large changes in the viewing angles. These
cause large part pose variations of the global shape, rather
than deformations of shape parts. In future work, we shall
augment our model by introducing pose variables to dis-
count these problems. Additionally, the currently proposed
part importance relies on contour-based models and requires
labeled contours for learning. This may bring about some
laborious work compared with the weekly supervised meth-
ods.
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