

AC -ta t . а а t a a ta а а ta • -1 t а a 🗣 a t• а ta a 1 -. а Haa tat a a t ta t t а 1 t а HaH t a ŧ а а t а AC+ a t• 1-1 a -•

. ∙• t t•

e e e e e e e e e e e e øe e ø 1991; e, 2002; é . & e e e e e

С....:ее, **b**, е. - : ее ре. р

, 2015). & еø e e e e e ø e e e -e e t e 2001; t ..., 2003; ., 2003; ., 2005; e t e t ., 2010; 2006; 2006; e e t e t . . , e e & e, 2011; ee *t* ., 2011; t ..., e

AC.

e e e p p e eeee., eeee eeee e e ø e e e e e e e -? ee, e e e e e e ¥ e e e t ., 2015) e e pe e e e e e (e e, ee e

p = e e = e p = e p = e p = e p = e p = e p = e p = e p = e et ., 2003; t ., 2012; e t ., 2015; eet ., 1997; t ., 2014) e e e ee e pe , , e , e ø e е, e . e e , e t . (2015) e e e e ee peee eee e fe

enene.jn, e e e nnee e ne e ee ee – n, e e e e e -p, e (e... e t, 1977, 1980; t, 2003; t, 2006; e & e, 2011). e e, e \forall e e ppee ep (e..e ee ; ee & e, 2011).

epee e e e ee pe e e e e. e(pe ee p e) e ee e p e ? e ee e e ? j fl e ppe, ее & е е (2002) р ре Æ е eep eppe . e,e pe е e. . e e e e , e e øe e , e e e e e 1 ee . - e e e ee e e e e e e e ee . e e ee ee
 p
 e
 e e
 .

 e
 e e
 e
 e
 e e
 e

 e
 e
 e
 (e. e p) p
 p
е. e e), eepepe p ee eeep e e e ee p pe e e... e -ee ; t ., 1988; e t ., 1990). e e , e t . (2013) e e p e e e e t . (2013) e e p e e e e e . t e e e e t . (2014) e e e e p e e p e e e e e -. , e e e e e (e ., e e e (e t ., 1991, 1993; e & e , 1996; e , 2002) pp pe e e e e e e е ø e

p epee ee pe e ee pp e p e p e e e. e

e e e e e (), e e e) e e e e e e ø ;() e ▶ (♥), e e , e e ø e pe e e e e ø e e e e t ., 2009); () e e e е е е.. æ

e e e p e e e e (), е ø e е ee e е e..., e.t., 2013); () e.eе е е (), e e, pe e e e e e e. e & e , 2013), ee e e e e e e (& pe... e & pe, 1977), e eøee e fe fe. e & e , 1972); () e j e (j), e e e e , e p e e ее, р ре

pe, e, ee eee, e e e, pe e e (e... e & e, 2013).

e e e ee e e e e p e ee je e ee e pe eee e е e e e pe e pee e e e ee ø e e.. e t ... 2001, 2003; e *t* ., 2015; ee t ., 2014).e e epefi, ee e e e е e – e e е е e eee pee-ee eee e e ee ø е e

M-t

Participants

 ee
 e
 e
 (13
 e
 2
 e
 e
 e

 e
 20.4
 e
 e
 16
 e
 (13
 e

 3
 e
 e
 e
 20.1
 e
 e
 18-22)
 p
 p
 e

fie epp). e ppepe

2336 . *t* .

e	e		e e		e		e
		e		e		•	
				- U			

MRI Structural image acquisition

e	1	e e	e e	e	U	10	e e	3		e -
e			е.	-e		3_				e
	e		3 - 🕨		e e	e 🕨	e		ø	e
(:	2530	,	: 3.39 ,	fl ø	e :	7 e	ee ,			e :
256	× 256,	e	e: 1.33	$\times 1 \times$	1.33	, 1	44	е,		-
	e : 8.0	7)								

Preprocessing

e		ee e		e	e	e
ee	e 5.0 (e	t ., 2008;	e		t, 2012	2; e e
t,	2012). e ø	e ep 🖣	e		/	e
e	,	e		e	p e (&
	, 1988),	pp	e	e	(, 2012).
e	e	eø ee		e	e	

Manual segmentation

- - ee (**)** ee e e e ерер ее -е 1- e e e e e .2.7 (p:// 3 ., 2012). e ; e t . J e е, e e e (), Ì •), e e e 🕨 e e e), e e (e (e Æ () e), e e (**j**). e e 1 e e e e e Į, J pee, e ø pe e e e e e e . 1). j p efie e e e e e (, t . (1998). e e e fi e e e ø e e ø е e e e p ee e e e e e e e e fi e e e е. e Æ e efie e e e e e e e pe e e e e e e e . (2001) e t e e e e e еJ ø e e e fi e e e e ø fl e e e ø e e e e e e e e e e e e e Ø e e e e fi e e e e e e е, fi e fi e , e e Ø e e e e e e e e e ØØ e e e e e e ø e e , e e ø (. ., 2007). e e fi e t e & (2006). e e fi e Æ epe e 🕨 е. e e e e , & (2006) e ppe e efie e e fi e Æ 1. e е e (P e ø e) еţ. e e е e e e e е, ₽ e fi e e e e j e e e e . e e e Æ Æ e е e , e j e e e (. 1). e

Reliability

pp, e pee e e e e (. .). e e e e e e

	Sagittal	Axial	Coronal
Α	alt of	**	108 W.F.
Thalamiu	f3		
	A and	E CR III	100
В	A Balla		15 8 W.
Pulvinar		2040.7	
			

(. - .; e . . .) e e e e pee) ee e e е ø Ø e . j e ee ø e e е. e e e e e e ø Ø e e fi e 1. e e e e ľ e e e e e e

, p -e e fi e e e (e : $\alpha = 0.95$; : $\alpha = 0.99$; e · : $\alpha = 0.99$; • : $\alpha = 0.98$; e : $\alpha = 0.98$; : $\alpha = 0.98$; e : $\alpha = 0.96$; : $\alpha = 0.95$; e $\alpha = 0.80$; $\alpha = 0.94$; e $\alpha = 0.86$; $\alpha = 0.83$; e < 0.05).

Data analysis

efi pe 6 (): , , , , , , . e) 2(p: e . e 1) , **)**, .e), 2(e pee: 🖌 e fi -19 19 , e e e ee -ø ø pe e e ee-e, e e p e е ee – e ee e øe

R t

elpee e e e e e e j peepeepee.ee-e ee kepee peep fi $(_{1.5,43.8} = 5.42; = 0.014;$ ee e - e e e]. eee - e e e e e e eee je pepe-peee ee ee fiepe e еее ре е . **Р**е ø e ee t < 1; e e p e : $t_{15} = 1.89; = 0.078]$. p , e e ppeceepe ee ee je pee e. pefi, e fi e e e e $(t_{14} = 4.287;$ t = 0.00075). e t e p e e e $(t_{14} = 2.025; = 0.062)$. e e ee p ø e pe e e (e P : $t_{14} = 1.115$; = 0.284; t < 1; e : $t_{14} = 1.294$; = 0.217). e e e e e e e e e e e ø øe e ø ee e 1.

TABLE 1. $e (^3) \not j e$

1	(e; = 15) (e; = 16)	e e) e ()	e ()	▶ e <i>t</i> -e
	e De	5.676 (0.735) 5.830 (0.989)	6.078 (0.958) 5.806 (0.996)	$t_{14} = 4.287^{**}$ $t_{15} = 0.278$
		1.235 (0.313) 1.498 (0.323)	1.358 (0.332) 1.458 (0.396)	$t_{14} = 1.115$ $t_{15} = 0.414$
	це Де Ца	$0.214 (0.055) \\ 0.274 (0.092) \\ 0.111 (0.036)$	$0.235 (0.045) \\ 0.250 (0.089) \\ 0.109 (0.027)$	$t_{14} = 2.025^{\circ}$ $t_{15} = 1.890$ $t_{14} = 0.160$
	J€ }⊈	$\begin{array}{c} 0.111 \\ 0.000 \\ 0.115 \\ 0.019 \\ 0.117 \\ (0.035) \end{array}$	$\begin{array}{c} 0.1109 \ (0.027) \\ 0.116 \ (0.034) \\ 0.128 \ (0.035) \end{array}$	$t_{15} = 0.186 \\ t_{14} = 1.294$
1		0.176 (0.038) 0.168 (0.025)	0.171 (0.034) 0.185 (0.036)	$t_{15} = 0.525 t_{14} = 2.477^* 0.182$
	e	0.193 (0.034)	0.194 (0.040)	$t_{15} = 0.182$

 $_{\pm}^{\pm} = 0.06; *_{\pm} < 0.05; **_{\pm} < 0.0001.$

D ---

e e pee epee ee pe ee pe ep peee e e 1 e pe e. e e e e pe e e -e e () e е е. е e - pe p e (e) (e t ., 1977, 1980; e e t ., 1998; t 1999; e t ., 2001, 2003; t ., 2003; t 2006; e e & e , 2011; t ., 2012; \forall t 2014; e t ., 2015), ee e pe e p e e p e e (e... e t ., 2015). e.. t .., t ., ť ., ерее р рe e e e e e e e e, e e . e e ø e e e e e e e ppee. е е, e рр, е e 🕨 е, е е), e pе e e j pe e e e e ø e e e e e

▶ е eøee øee e pe e e e e e pe e e e e e t ., 2014). e e ø ee ee ø e., ee ee e e ø e e e е e ee e e e e e e e e, pe øe e e e e e e - e - e e e eee e e . e e e е e e(e)e ee e fe. e e e e е e – e e eee pe-e e e e e еø, e e e e e p. ; p , e e p e e t . (2015), e e p e e e pe p e . e p e e e e e e e e e e e e e e e e e e e ø p p e e øee e p e е e ø e e ee.pefi, e e ee e e ø

e e e (e t ., 2014), e p-e (t ., 1988; e e Øe e t ., 1990; e t ., 2013). e e , e **j** ee e pe e e pe e e e.. & e, e, 1993; e & e, 2001; e, 2002). e, e e e e ø e e е. ø e ej e ø ø e pe (e.e) ee e

- ee,..,,,,,,,,,,,,,&
- e, e e е.

8, 177. , . ., , P. ., , . & , . (2009) e e p . λ . D . ., 101, 917-925. , . . & , . . (2000) ▶ e e e e e ₱ ¥ e e e e e e e . е -

- e