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SUMMARY

The brain is continuously modified by perceptual
experience throughout life. Perceptual learning,
which refers to the long-term performance improve-
ment resulting from practice, has been widely used
as a paradigm to study experience-dependent brain
plasticity in adults [1, 2]. In the visual system, adult
plasticity is largely believed to be restricted to the
cortex, with subcortical structures losing their ca-
pacity for change after a critical period of develop-
ment [3, 4]. Although various cortical mechanisms
have been shown to mediate visual perceptual
learning [5–12], there has been no reported investiga-
tion of perceptual learning in subcortical nuclei. Here,
human subjects were trained on a contrast detection
task for 30 days, leading to a significant contrast
sensitivity improvement that was specific to the
trained eye and the trained visual hemifield. Training
also resulted in an eye- and hemifield-specific fMRI
signal increase to low-contrast patterns in the mag-
nocellular layers of the lateral geniculate nucleus
(LGN), even when subjects did not pay attention to
the patterns. Such an increase was absent in the par-
vocellular layers of the LGN and visual cortical areas.
Furthermore, the behavioral benefit significantly
correlated with the neural enhancement. These find-
ings suggest that LGN signals can be amplified by
training to detect faint patterns. Neural plasticity
induced by perceptual learning in human adults
might not be confined to the cortical level but might
occur as early as at the thalamic level.

RESULTS

Behavioral Learning Effects
Twenty subjects underwent 30 daily training sessions (1,200 tri-

als per session) to perform a monocular contrast detection task
with a faint checkerboard pattern presented in the left or right

visual hemifield (Figure 1A). The trained eye and hemifield was

fixed throughout training. On a trial, the checkerboard was pre-

sented in one of two intervals (Figure 1B). Subjects were asked

to indicate which of the two intervals contained the checker-

board. A QUEST staircase was used to control the contrast of

the checkerboard adaptively to estimate subjects’ contrast

detection thresholds at 75% accuracy.

Throughout training, subjects’ contrast detection thresholds

decreased gradually and significantly (F(29, 551) = 15.136;

p < 0.001) (Figure 1C). Before and after training, we measured

subjects’ contrast detection thresholds and fMRI contrast

response functions in four test conditions: the trained hemifield

in the trained eye (THTE), the trained hemifield in the untrained

eye (THUE), the untrained hemifield in the trained eye (UHTE),

and the untrained hemifield in the untrained eye (UHUE). Sub-

jects’ performance improvement was quantified as percent

change in detection threshold after training, relative to the

thresholds measured before training (Figure 1D). Performance

improvements were submitted to a repeated measures two-

way ANOVA, with eye and hemifield as within-subject factors.

We found a significant main effect of eye (F(1, 19) = 23.983,

p < 0.001) and hemifield (F(1, 19) = 42.331, p < 0.001). The inter-

action between eye and hemifield was also significant (F(1, 19) =

3.664, p < 0.05). The strongest learning effect occurred in the

THTE condition (one-sample t test, t(19) = 5.539, p < 0.001),

and it was significantly larger than the learning effects in the other

three conditions (paired t test, all ts(19) > 4.573, p < 0.001,

Bonferroni corrected). The learning effect in the THUE condition

was marginally significant (one-sample t test, t(19) = 2.638,

p = 0.065), but little learning took place in the other two condi-

tions (one-sample t test, both ts(19) < 2.100, p > 0.197). These

psychophysical results demonstrated that training led to a signif-

icant learning effect on contrast detection, which was specific to

the trained eye and the trained hemifield.

fMRI Learning Effects in Visual Areas
The regions of interest (ROIs) in visual areas 1–3 (V1–V3) and the

lateral geniculate nucleus (LGN) were defined as a set of contig-

uous voxels (2 3 2 3 2 mm3) that responded significantly to

the full-contrast checkerboard stimuli. Identification of the LGN
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voxels was further constrained by the anatomical locations of the

LGN based on high-resolution T1 images. On the T1 images in

Figure 2A, which shows the LGN from a representative subject,

the LGN appeared darker relative to surrounding brain tissues.

The LGN is the thalamic component in the retinocortical projec-

tion and has been traditionally viewed as a passive relay station

for retinal signals on their way to the primary visual cortex, or V1

[13]. This view has been challenged recently. There is growing

evidence from human fMRI and monkey neurophysiology

studies that neural responses in the LGN are influenced by

perceptual and cognitive tasks (see [14] for a review).

Using the counterphase flickering checkerboard stimuli, we

measured fMRI contrast response functions in the ROIs at three



BC

repres entative subje ct’s brain (T1 images) from

sagit tal, coronal, or axial views, as ind icated by the red

arrows. The second row shows the ROIs (red areas) of

the subject’s LGN for analysi s.

(B) Counterphase flickering chec kerboards at thre e

contrast levels (6%, 24%, and 96%) were presented in

the left or right visual hemifield alternately. Subjects

viewed the check erboards with either the trained or

the untrained eye.

(C) FMRI contrast response functions in the LGN, V1,

V2, and V3 before and after training. The asterisks

indicate a significan t difference before and after

training (**p < 0601).

Error bars denote 1 SEM across subje cts. See also

Figures S1andS2.

M and P neurons, respectively.To validate the spatial topography of theMand P layer s, for all subjects, their right LGN

was mirror flipped to the left, and all LGNs

were registered to their center of mass. Rela-

tive to the center of the P layers, the center of
to differentially activate the M (M stimulus) and P (P stimulus)

neurons in 15 of the 20 subjects. The P stimulus was a

high-spatial-frequency isoluminant red/green square wave

pattern and was counterphase flickered at 1 Hz. The M stim-

ulus was a low-spatial-frequency sine wave pattern, with

30% luminance contrast, and was counterphase flickered at

7.5 Hz (Figure 3A). The M layers of the LGN were identified

as voxels showing a greater response to the M stimulus than

to the P stimulus, and vice versa for the identification of the

P layers. It should be noted that, due to the spatial resolution

limit of fMRI, some voxels in the identified M or P layers might

contain both M and P neurons (see [20], in which M layers and

P layers are approximately 2 and 4 mm thick, respectively).

However, it is safe to claim that voxels identified as located



day 3 100%) and the BOLD signal change at the 6% contrast

level. The correlation was significant in the M layers (r = 0.636,

p < 0.05), but not in the P layers (r =�0.104, p = 0.712), suggest-

ing a fundamental role of the M layers in this learning (Figure 4B).

DISCUSSION

One month of training on a near-threshold contrast detection

task led to a significant improvement in human subjects’ contrast

sensitivity, which was specific to the trained eye and the trained

visual hemifield. Parallel to the behavioral learning effect, training

also resulted in an eye- and hemifield-specific response increase

to low contrast in the M layers of the LGN, but not in the P layers,

V1, V2, or V3. Remarkably, the neural response enhancement in

the M layers was closely associated with the contrast sensitivity

improvement. Though it is traditionally believed that perceptual

learning is underpinned by plasticity mechanisms at the cortical

level, our findings demonstrate that, even at the thalamic level,

neural circuits are not hardwired, and perceptual learning can

modify receptive field properties of the LGN neurons.

It has been shown that perceptual learning can change cortical

processing of trained stimuli in various ways, such as sharpening

tuning curves [6, 12, 22], improving the stability of neural activa-

tion patterns [11, 23], enhancing neural response [24, 25], and re-





the glutamate receptor agonist to block visual responses in on-

center retinal ganglion cells and found that the inactivation led

to a rapid emergence of off-center responses from on-center

neurons in the LGN. A significant stride we made in the present

study is that, without such abnormal visual experience (i.e.,

eyelid closure or pharmacological inactivation), even regular

practice could profoundly change local receptive field properties

of the LGN neurons in human adults. Recently, it has been recog-

nized that the LGN and other thalamic structures actively regu-

late information transmission to the cortex and between cortical

areas using various mechanisms, thereby contributing to

perception and cognition much more than we previously

believed [14, 41]. Exploring the functional plasticity of the

subcortical structures induced by training is an important

research topic in the future, which is necessary for us to fully un-

derstand the adaptive nature of perceptual and cognitive infor-

mation processing in the brain.

EXPERIMENTAL PROCEDURES

The procedures and protocols used in this study were approved by the human

subject review committee of Peking University. Complete procedures can be

found in the Supplemental Information.
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